
Meta Resource Management System
Technology Evaluation

René Freude (707168) <rene.freude@gmx.de>
Daniel Sadilek (707297) <sadilek@tfh-berlin.de>

Stephan Weiß (706830) <steph.weiss@web.de>
Copyright © 2003

2003-09-21

Revision History
Revision 0.1 2003-09-21

Initial public release.

This document contains the insights we obtained while evaluating the technology we will use
for the implementation of the MRMS.

Table of Contents
1. Overview ... 1
2. Development Environement ... 1
3. Database .. 2

3.1. Evaluation Code .. 2
4. Communication between Client and Server ... 3

4.1. Evaluation Code .. 4
4.1.1. .NET Service ... 4
4.1.2. .NET Type .. 4
4.1.3. .NET Server .. 5
4.1.4. .NET Client ... 5
4.1.5. Java Client .. 6
4.1.6. Lessons Learned ... 6

5. Server Runtime Environment ... 7

1. Overview
We will implement a three-tier architecture using the .NET Framework. For this, we have to select a database, a
runtime environement for the server and an interprocess communication implementation for the communication
between client and server. For development, we need an Integrated Development Environment (IDE) and a test-
ing framwork.

2. Development Environement
We will use Visual Studio .NET as IDE. We made all tests with it: It is easy to use and comprehensive; we only
missed functions for refactoring and testing. For the latter we found a a .NET implementation of the xUnit ap-
proach: NUnit (http://www.nunit.org), which is nicely integrated into Visual Studio .NET: It can be run from
within it and you can jump with one click to failed tests. Writing tests is as easy as with JUnit, but instead of
naming conventions NUnit uses .NET attributes to mark test classes and methods:

using System;
using NUnit.Framework;
using System.Diagnostics;

namespace Tests
{

[TestFixture]
public class CSharpTest

1

http://www.nunit.org

{
[SetUp] public void SetUp()
{
}

[TearDown] public void TearDown()
{
}

[Test] public void TestMe()
{

Assertion.Assert("failing test", false);
}

[Test] public void TestTrace()
{

// Trace/Debug messages won't be output when running all
// tests in assembly.
Trace.WriteLine("Trace...");
Trace.Assert(true == false, "true is not false",
"- more detail");

Trace.WriteLine("Hello World!", "Trace");
}

}
}

3. Database
The .NET Framework provides ADO.NET as the standard data access technology. It has a strong abstraction
layer (compared to Java-JDBC), leaving us the flexibility of choosing a suitable layer of abstraction.

Our initial intention was to use a native XML database for persistent object storage. When we tried to find a free
production stable XML database, it showed up, that such thing is not available. A further evaluation of free
OODBMS products brought very similar results. Therefore we decided to fall back to a relational database solu-
tion combined with object relation mapping. The only free OR mapping implementation we found does not sup-
port transactions, so that we will have to implement our own OR mapping solution.

The necessary standard database access is provided by the ADO.NET library, that is shipped with the .NET
runtime environment. We found one driver written for MySQL and one for PostgreSql. Development of the lat-
ter has just been started, so we decided to use MySQL as database server.

3.1. Evaluation Code
The following code tests a basic database query and illustrates how MySQL can be used with a .NET applica-
tion. The top level object needed first is a connection object (class MySQLConnection), that is created with a
connection string holding the needed information to access the MySQL database server. After opening the con-
nection (connection.Open()), a command object (class MySQLCommand) can be created, that encapsulates
the preparation and execution of a SQL command. Navigation through the results of a query can easily be done
with the returned object of type IDataReader.

using System;
using System.Data;
using NUnit.Framework;
using ByteFX.Data.MySqlClient;

namespace Tests {
[TestFixture]
public class MySQLTest {

// the connection object
private IDbConnection _connection;

[SetUp]
public void SetUp() {

// prepare connection string
string conString = "Server=locahost;Database=test;"

+ "User ID=dba;Password=sql";
// create connection object with connection string
_connection = new MySqlConnection(conString);

Meta Resource Management System

2

// open database connection
_connection.Open();

}

[Test]
public void testCommandExecution() {

IDbCommand command;
// prepare command
command = _connection.CreateCommand();
command.CommandText = "SELECT firstname, lastname "

+ "FROM employee";
// execute command and get reader
IDataReader reader = command.ExecuteReader();
while(reader.Read())
{

string FirstName = (string) reader["firstname"];
string LastName = (string) reader["lastname"];
Console.WriteLine("Name: " +

FirstName + " " + LastName);
}
reader.Close();
command.Dispose();

}

[TearDown]
public void TearDown() {

_connection.Close();
}

}
}

4. Communication between Client and Server
The .NET Framwork provides two means for the communication between a client and a server:

1. Web Service

In .NET a web service is implemented as a .asmx file which must be deployed into an installation of Mi-
crosoft's Internet Information Server (IIS) that supports ASP.NET.

2. .NET Remoting

“The .NET Framework provides a number of services such as activation and lifetime control, as well as
communication channels responsible for transporting messages to and from remote applications. Format-
ters are used to encode and decode the messages before they are sent along a channel.” [MSDN] There are
different channels distributed with the .NET Framework: TcpChannel which is based on TCP-Sockets and
HttpChannel which is based on the well-known HTTP; also there are different formatters: BinaryFormatter
for performance critical applications and SoapFormatter where interoperability with other remoting sys-
tems is essential.

So, it seems as if you have the ability to create web services by using .NET Remoting? Yes, and to make the
situation completely unmanageable you may host your .NET Remoting application either in the IIS or stand-
alone.

The following table lists the differences between .NET Remoting and web services.

Table 1. .NET Remoting vs. Web Services

.NET Remoting Web Services

Faster when using TcpChannel and BinaryFormatter Slower

May run inside IIS and stand-alone Need an IIS

When stand-alone: Server runs on every Windows ver-
sion >= 95

IIS is only available for the server versions of Win-
dows

Meta Resource Management System

3

.NET Remoting Web Services

Supports events Do not support events; client must poll changes on the
server

Server objects may have a global state or a state per
client or no state at all

Must be stateless

Supports remote references Every object is passed by value

Lower interoperability with other systems and/or pro-
gramming models

Higher interoperability

Full support for the .NET type system, perfect type fi-
delity

Support for only a subset of .NET's types

From this table you can draw the conclusion that .NET Remoting is much more powerful while web services are
more interoperable. Since interoperability is not a key-requirement for us because we want to implement the cli-
ent with .NET, as well, we have chosen to use .NET Remoting. However, the following section where we
present some code examples that show how to use .NET remoting also contains Java code that accesses the
.NET server process via SOAP.

4.1. Evaluation Code

4.1.1. .NET Service

To write a class that can be used with .NET Remoting the only thing you have to do is to implement the marker
interface MarshalByRefObject.

using System;

namespace remotingTypes {
public class MyService : MarshalByRefObject {
public MyService() {

Console.WriteLine("Instance of MyService created.");
}

~MyService() {
Console.WriteLine("Instance of MyService deleted.");

}

public DateTime getServerTime() {
Console.WriteLine("getServerTime() invoked");
return DateTime.Now;

}

public MyType getMyType() {
return new MyType("Hello Java!", 1234);

}

public int add(int x, int y) {
return x + y;

}
}

}

4.1.2. .NET Type

The service above contains a method named getMyType() which returns an object of the type MyType. It is
shown in the following listing.

using System;

namespace remotingTypes {
[Serializable] public class MyType { // passed by value
// public class MyType : MarshalByRefObject { // passed by reference
public string content;
public int number;

public MyType(string content, int number) {

Meta Resource Management System

4

this.content = content;
this.number = number;

}

public string getTestContent() {
return content;

}

public void remoteMethod() {
Console.WriteLine("remoteMethod() invoked.");

}
}

}

4.1.3. .NET Server

To make the service available we need to have a server process that opens a channel, registers the type MySer-
vice as a server remoting type and keeps running until the user the stops it (in our example by pressing enter).
Then, the service is reachable via the URI http://localhost:8082/object1uri and its Web Service De-
scription Language (WSDL) file can be downloaded from http://localhost:8082/object1uri?wsdl.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using remotingTypes;

namespace remotingServer {

class ServerProcess {
[STAThread]
static void Main(string[] args) {

IChannel channel = new HttpChannel(8082);
ChannelServices.RegisterChannel(channel);

MyService object1 = new MyService();
ObjRef refl = RemotingServices.Marshal(object1, "object1uri");
Console.WriteLine("URI: " + refl.URI);

Console.WriteLine("Press enter to end.");
Console.ReadLine();

RemotingServices.Disconnect(object1);
ChannelServices.UnregisterChannel(channel);

GC.Collect();
GC.WaitForPendingFinalizers();

}
}

}

4.1.4. .NET Client

We wrote a little tester that connects to the server process and invokes some methods. The call of ob-
ject1.getMyType().remoteMethod() which prints out the string "remoteMethod() invoked." shows the
difference between parameters and return values passed by reference and passed by value. If MyType is declared
as "[Serializable] public class MyType", object1.getMyType() returns an object of type MyType
by value and the string is printed out on the client. If MyType is declared as "public class MyType : Mar-
shalByRefObject", object1.getMyType() returns a remote reference to an object on the server and the
string is printed out on the server.

We tested the performance of the HttpChannel and the SoapFormatter by making 1000 successive calls: It took
less than five seconds, thus it took less than five milliseconds per call which we consider to be fast enough.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using remotingTypes;

Meta Resource Management System

5

namespace remotingClient {
class ClientProcess {
[STAThread]
static void Main(string[] args) {

IChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterWellKnownClientType(
typeof(MyService), "http://localhost:8082/object1uri");

MyService object1 = new MyService();
if (object1 == null) {
Console.WriteLine("Could not locate server.");
return;

}

Console.WriteLine("ServerTime: " + object1.getServerTime());
object1.getMyType().remoteMethod();

int x = 0;
DateTime start = DateTime.UtcNow;
for (int i = 0; i < 1000; ++i) {
x = object1.add(x, i);

}
Console.WriteLine("x: " + x);
DateTime end = DateTime.UtcNow;
Console.WriteLine("Time: " + (end-start).ToString());

Console.ReadLine();
}

}
}

4.1.5. Java Client

We also wanted to check whether we could connect to the .NET server process via Java: We downloaded the
WSDL file and used the WSDL2Java tool from the Axis project (http://ws.apache.org/axis/) to create Java stubs
from it. It worked, even only a little bit slower than the .NET client (the 1000 calls took 6.7 seconds), but: the
parameters and return values can only be passed by value and their types may only contain public properties (no
methods).

public class Tester {
public static void main(String[] args)
throws MalformedURLException, ServiceException, RemoteException {
MyServiceService service = new MyServiceServiceLocator();

// Now use the service to get a stub which implements the SDI.
MyServicePortType port = service.getMyServicePort();

System.out.println("Got port.");

System.out.println("Server time: " + port.getServerTime());
MyType myType = port.getMyType();
System.out.println("Content: " + myType.getContent());
System.out.println("Number: " + myType.getNumber());
System.out.println("3 + 5 = " + port.add(3, 5));

int x = 0;
long start = System.currentTimeMillis();
for (int i = 0; i < 1000; ++i) {

x = port.add(x, i);
}
System.out.println("x: " + x);
long end = System.currentTimeMillis();
System.out.println("Time [ms]: " + (end - start));

}
}

4.1.6. Lessons Learned

Meta Resource Management System

6

http://ws.apache.org/axis/

.NET Remoting is powerful, fast and easy to use. It is interoperable with Java to a certain degree: If we only use
simple data container types that act like structs we can use the service with Java.

5. Server Runtime Environment
The server implements the core functionality of our resource management system and must provide it to client
applications on the network. The decision for a runtime environment depends on the technology we use to ex-
pose functionality to clients on the net. As a result of the evaluation of communication technologies, we decided
to use .NET Remoting instead of Web Services. One deciding point was, that .NET Remoting works stand-alone
with the standard runtime environment, while Web Services - written in ASP.NET - need to be run inside a web
server. No free and suitable substitute for Microsoft's Internet Information Server (MS-IIS) could be found, so
switched to .NET Remoting and will only need the .NET framework (including libraries and the common lan-
guage runtime - CLR) for the server to run. A free, redistributable version of the .NET framework is available
for download on ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&disp
laylang=en.

Meta Resource Management System

7

http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&displaylang=en

