Meta Resource Management System

Design Model

René Freude (707168) <r ene. f reude@web. de>
Henry Hinze (681566) <henry@ilit. net>
Daniel Sadilek (707297) <sadi | ek@f h-berl i n. de>
Stephan Weil3 (706830) <st eph. wei ss@web. de>
Copyright © 2003

2003-11-03
Revision History
Revision 0.1 2003-05-19
Initial public release.
Revision 0.2 2003-06-09
Corrected some cardinalities, extended descriptions, added operations.
Revision 0.3 2003-06-15
Added "user logs in" sequence diagram.
Revision 0.4 2003-06-23
Extended from static model to analysis model.
Revision 0.5 2003-10-06

Incorporated optional feature "Resource Reservation" (see appendix of this document for the use
cases derived from that feature); refined package structure; introduced distinction between physical
resource containment hierarchy and resource usage.

Revision 0.6 2003-10-20
Extended from analysis model to design model.
Revision 0.7 2003-11-03

Refined model for server and client; added sequence diagrams for verification.

This document contains the class diagrams and class descriptions that resulted from the static
analysis and the design analysis as well as sequence diagrams and state chart diagrams that we
used to verify the class model.

Table of Contents

@Y= = TP 2
2. PaCKage: MOGELo e e ea e 3
2.1, Package: MOCEENTITY ...iiii i e e e e e e e 3
N N B O =) Y 1Y =P 4
2.1.2. ClasS. ENUILYTYPEID ...oiiiiieiiiii et 4
2.1.3. ClasS. RESOUICETYPE ...ieuiiieeteti e ettt ettt ettt e et e e et eeera s 4
2.1.4. Class. EMPIOYEETYPE ...ttt e e e e et e et e e e e aeanaaes 5
2.1.5. ClESS. ENLILY ...ttt eeaeeae 5
2.1.6. ClasS. ENLIYIDccoieeeiiiiieeee ettt e e e e e eene 5
2.1.7. ClESS RESOUICEceeeeieiiei e ettt e et e e e e e e e e e e e e e eeenes 5
2.1.8. Class EMPIOYEE ...t 5
2.1.9. Class. AtDULETYPE .. 5
2.1.10. Class: BOOIeaNAITDULETYPE ...ttt e e e 6
2.1.11. Class: NUMDErALDULETYPE ...c.unieiieiie e 6
2.1.12. Class: TEXLARITDULETYPE . .ovueiiii e e e e e e e e e e e et e e e et e e aanaees 6
2.1.13. ClasS: ALIDULEoeeeiiii e 6
2.1.14. Class: BOOIEANATITDULEeveii et e e e e e e e e 6
2.1.15. Class: NUMDBDEIATIDULEiiiee e e 7
2.1.16. Class: TEXLATITDULEu e e e e 7

2.2. Package: MOCE!JINKAOE i 7
2.2.1. ClasS. LINKRUIEouuiiiiie ettt eeeeeenes 7

Meta Resource Management System

2.2.2. CLASS. LINK .ot 8
2.2.3. Class: ResourceContainmentLinkKRUIEcouiiiiiiiiiii e 8
2.2.4. Class. ResourceContainMmEeNntLinkcoouiieiiiiiiiiiiiiinee e 8
2.2.5. Class: ResourcelUsagelinkRUIEcouuiiiiii e e e 8
2.2.6. Class: ReSOUrCEUSATELINK ...ccevuiiiiiiie e 8
2.2.7. Class. CardiNalitySPECueiiiiiieeiii ettt 9

2.3. PaCKage: MOOE] . USEN ...ttt ettt ettt e e e e e e s 9
2.3.1. Class: AUtNENtiCELIONDELAccuuuiiieieiie e 10
PR B O = U L PR 10
2.3.3. ClASS ROIE «.eviiiei e 11
2.3.4. Class: ACCESSRIGNEceeie e 11
2.3.5. Class: ReSOUrCEACCESSRIGNTuiiiiiiieiii e 11
2.3.6. Class: AttribUtEACCESSRIGNTuiiiiiiieee e 11
2.3.7. Class: LINKACCESSRIGNLoeeiii e 12

2.4. Package: MOCELFIITEr ... 12
24,0 ClasS. FIlLEr oviie e 12
P O = o 1 1 1 | 13
2.4.3. Class: AttribUtECONSIFAINTovveieei e e e e e e eenas 13

2.4.4. Class. ContainmentCONSLIAINTcceuuieiiiiei e e e e e e 13
2.4.5. Class: USBQECONSITAINTccuuiiiteiee et e e e e 14
2.4.6. Sequence diagram: Filter.getMatChingRESOUICEScccvviviiiiiiieiiieeciieeeeee e, 14

3. PaCKAgE: ClIENt .oeeie e e 14
T B O P S S =SS Lo S - (< 15
3.2. Class: MaiNCONIOI B ... iieeeiii et e e e e e e e e et e e et e eeanaeees 15
3.3. Class: ADSIrACtCONLIONcueiiie e e et e eanaeees 19
3.4, ClasS. VIBWECONLAINES ... ccuuuiitn et et et e et e e et e et e ettt e e et e e et e e e tn e eaneeanaaetn e eanaees 20
3.5. Package: Client.CONLIOloiiueiii e e e e e e e e eees 20
3.5.1. Class: UsaerLogsIiNCONLrolcc.uiiiiiieiiiei e e e e e e 21
3.5.2. Class: NavigationCONIOloiiieuiiiiiiii e 22
3.5.3. Class: EditReSOUrCECONTIOuuiiieieeiiee e e e e 23
3.5.4. Class: CreateFilterCOoNtroliiiieiiiiiie e e 24
3.5.5. Class: MenUBAIrCONLIONiiueiiii et ean s 25
3.5.6. Class: TOOIBarCONLrOlcceuuiiiiiiiiieeee e 25

3.6. PaCkage: ClIENLVIBIW ...ooueiii e e e e e e e e e e e e eanaeee 26
3.6.1. Class: USErLOGSINVIBIWiiiiiiiee it 26
3.6.2. Class: NaVIgaliONVIBWoiieiiiieiiii e 27
3.6.3. Class. EQItRESOUICEVIEW .. .c.uniiieieiii e e e e 27
3.6.4. Class. CreateFilterVIBWc.uiiii it 27
3.6.5. Class: MENUBAINVIBWcuuiiiiiiiieeiii ettt e et e e e e e 27
3.6.6. Class: TOOIBAVIBWccuuiiiiiiiieee e 27

3.7. Sequence diagrams for package model.Clientooouuiiiiiiiiii 27
3.7.1. Sequence diagram: APPlICAtioN SEAoveveeuiieiiii e 28

3.7.2. Sequence diagram: AbstractControl'slife cyclecooviiiiiiiiiiiii 28

3.7.3. Sequence diagram: USEr [OGSiNieuniiiiiei e 29
3.7.4. Sequence diagram: Create filtered collection of resource entriesc.ccceeeennne. 30

3.7.5. Sequence diagram: Edit rESOUICESccvvuiiiiiieiiie e 31
o o Ll < Y= PSP 31
I O o Sl Y 1 = o[32
4.2. Class: FACAOECONIEXEccuuieiieeie e et e e e e et e e e eeeens 36
4.3. ClasS: LOCKIMIBNAGETceuuieiieei ettt ettt e e e et e et e et e e e eeeens 36
4.3.1. Sequence diagrams: LOCKINGuiiuneiiiieiiiieeie e e e e e e e e e e e e e eaaaeens 38

4.4, Class: PerSiStENCELAYENuiviieieiieeei et 39
5. Appendix: .NET EVENt HaNAIINGoooeuiiiiiiiiie e 39
B. APPENIX: USE CASES ... ettt ettt e e et e e et e et e e e e 41
6.1. Create reSOUrCE FESEIVALTIONuuiitiieeii e et e e e e e e et e e s e e e e e et e e et e e eenaaees 41
6.2. DElEte rESOUCE FESEIVALTION ... ietiiit ittt e ettt e e e et e e e e e e et e eaaaees 42
6.3. Change reSOUICE FESEIVALIONiuuiieiiiieiieee e et e e e e e e e e e e e e e e e e et e e et e eeanaaees 42
6.4. Create filtered collection of resource reservation entrieScoveveeiinieviiiine e, 43

1. Overview

Meta Resource Management System

So far, the design model only covers a subset of all use cases - completely defined in the document “Use Cases’.
The remaining use cases will be considered during the next revisions of this document. The use cases covered so
far are:

User logsin
Create filtered collection of resource entries

Edit resources

This document is organized along the package structure of the MRMS. Every package describes one aspect of
the system:

model.entity: The MRMS can handle resources and the employees; the attributes that are to be saved for
each resource type and employee type can be configured by an administrator. This common functionality is
pulled up to the super type Entity. The package model.entity contains the classes to handle entities
(resources, employees) and their attributes (number, text, boolean).

model.linkage: Resources and employees do not exist detached. Resources can be organized in a physical
containment structure (e.g. a room contains workplaces, workplaces contain a computer, and so on) and re-
sources can be used by employees. The package model.linkage contains the classes that are necessary to rep-
resent these links.

model.user: The users of the system need different access rights according to the role they play in the busi-
ness. The package model.user contains the classes that represent the rights users have to create and delete
entities, edit their attributes and create links.

model filter: Creating afiltered collection of resources is a complex function that is required in different use
cases. The package model .filter contains the classes needed to configure afilter with constraints and execute
it.

client: Classes needed to realize an interaction between the user and the MRMS.

server: Classes for the MRMS server.

(The classes imported from others packages are colored yellow.)

2. Package: model

This package does not contain any classes but only the subpackages entity, linkage, user and filter.

2.1. Package: model.entity

The following diagram depicts the classes to handle entities (resources, employees) and their attributes (number,
text, boolean).

Figure 1. Entity Classes

Meta Resource Management System

==metaclass== Employee
EmployeeType
class instance
=«metaclasgs=» Resource
e
class instance
-parentRequired:Boolean
EntityTypelD EntityiD
-uniguelDrint -uniguellrint
-revisioncint -revisiorint
<=abstract metaclass=> / <<abstactss f————""" .
EntityType Entity
clags instance
-harme:String
1 1 =<metaclasg== 1 1.7 | ==abstract==
iusteTyp - Attribute
-name:string tlass instance
-onlyPredefinedvaluesAllowed Bo
-mandataory:Boolean
-frozen:Boolean
=<metaclags== Number Attribute
HumberattributeType
class instance | “YalueNumbar
-predefinedYalues Numher]
-minvalug:Mumber
-maxvalueNumhber —
==metaclass=» TextAttribute
TextattributeType
class instance | -value:String
-predefinedvalues: Stringl
-minSize:Mumber

==metaclass=» BooleanAttribute

-manize:Number Booleanattribute Type

-value Boolean

class instance

2.1.1. Class: EntityType

Description

Attributes

Operations

An EntityType has a name and specifies (by composition) the Attributes that an Entity of this
type has, it references a unique EntityTypel D.

name (String): the name of the EntityType

2.1.2. Class: EntityTypelD

Description

Attributes

Operations

An EntityTypel D isa unique identifier for an EntityType.
uniquel D (int): an integer which is unique within the set of al EntityTypes
revision (int): an integer which is incremented by the server with every change; thisfield is used

by the server to verify that the EntityType a client refers to has not changed since the client re-
ceived the EntityType's data

2.1.3. Class: ResourceType

Description

Attributes

A ResourceTypeis a specialised EntityType for defining Resources.

parentRequired (Boolean): specifies whether instances of this ResourceType must have a parent
Resource

Meta Resource Management System

Operations

2.1.4. Class: EmployeeType

Description An EmployeeType is a specialised EntityType for defining Employees.
Attributes

Operations

2.1.5. Class: Entity

Description An Entity is composed of its Attributes and is an instance of an EntityType which specifies
which Attributes the Entity may have, it references a unique EntitylD.

Attributes ---

Operations

2.1.6. Class: EntityID

Description An EntitylD isaunique identifier for an Entity.

Attributes uniquel D (int): an integer which is unique within the set of all Entitys
revision (int): an integer which is incremented by the server with every change; thisfield is used
by the server to verify that the Entity a client refers to has not changed since the client received
the Entity's data

Operations

2.1.7. Class: Resource

Description A Resourceis a specialised Entity for representing real-life-resources and is an instance of a Re-
sourceType which specifies if this Resource must have a parent Resour ce within the Resources-
Containment-Hierarchy.

Attributes

Operations

2.1.8. Class: Employee

Description ~ An Employee is a specialised Entity for representing users of real-life-resources and is an in-
stance of an EmployeeType.
Attributes

Operations

2.1.9. Class: AttributeType

Meta Resource Management System

Description Abstract base class for attribute types that an EntityType is composed of.
Attributes name (String): the name of the AttributeType

onlyPredefinedValuesAllowed (Boolean): if true, the user may only select the predefined values
for an Attribute that has this type; if false, he may enter another value as well

mandatory (Boolean): if true, the user must enter avalue for Attributes of thistype
frozen (Boolean): if true, the user may not change the value of Attributes of thistype

Operations

2.1.10. Class: BooleanAttributeType

Description Concrete AttributeType for logical property characterisation of an Entity.
Attributes value (Boolean): logical property characterisation of an Entity

Operations

2.1.11. Class: NumberAttributeType

Description Concrete AttributeType for Numerical Attributes.

Attributes predefinedValues (Number[]): an array specifying predefined values for Attributes of thistype
minValue (Number): the minimum value Attributes of this type may have
maxValue (Number): the maximum value Attributes of thistype may have

Operations ---

2.1.12. Class: TextAttributeType

Description Concrete AttributeType for TextAttributes.

Attributes predefinedValues (String[]): an array specifying predefined values for Attributes of thistype
minSze (Number): the minimum number of characters Attributes of this type may have
maxSize (Number): the maximum number of characters Attributes of this type may have

Operations ---

2.1.13. Class: Attribute

Description Abstract base class for Attributes that an Entity is composed of .
Attributes

Operations ---

2.1.14. Class: BooleanAttribute

Meta Resource Management System

Description Concrete Attribute for a boolean property characterisation of an Entity.
Attributes value (Boolean): numerical property characterisation of an Entity

Operations

2.1.15. Class: NumberAttribute

Description Concrete Attribute for anumerical property characterisation of an Entity.
Attributes value (Number): numerical property characterisation of an Entity

Operations

2.1.16. Class: TextAttribute

Description Concrete Attribute for atextual property characterisation of an Entity.
Attributes value (String): textual property characterisation of an Entity

Operations

2.2. Package: model.linkage

The following diagram depicts the classes that are necessary to represent the physical containment links
between resources and resources and the usage links between resources and employees.

Figure 2. Linkage Classes

CardinalitySpec LinkRule Link
-minCardinality:Mumber 1 1 |-name:String
-maxCardinality:Mumber “ThidCardna iy -attivationAttributeType:BoaleanAttib uteType class instance | | oetparentEntity

-minCardinalityAttribute Type:NMumberAttribute Type
-maxCardinalityAttribute Type:Numherattribute Type

+getChildren:Resource]

Iffor 2 specific ResourceType it ResourceContainmentLinkRule RessourceContainmentLink
11 parentRequired == true, there must be at
least one ResourceContainmentLinkRule
where childType == i1 instance The time periods of all
Onthe instance side, for everey specific ResourcelsageLinks that
Resource r1 oftype i1, there must be exactly reference one specific

one ResourceContainmentLink where I Resource must nat
childResource == r1 I -

-parenfType ResourceType -parentResource:Resource
— | -childType:ResourceType tlass -childResource:Resource

|
ResourceUsageLinkRule ResourceUsageLink

-emploveeType:EmployeeType -employee; Employee
-resourceType:ResourceType -resource:Resource
-startDate:Date
-stopDate:Date

class instance

2.2.1. Class: LinkRule

Description A Link Rule defines the characteristics of a consistent Link. Both the physical containment
structure of the resources as well as the usages of the resource by the users can be modelled as

7

Meta Resource Management System

links. In both cases the corresponding link rules have the characteristic that the cardinality of
one side is 1; for the physical containment links this side is the parent resource type and for the
usage links this side is the employee type. The other side of the link rule can have an arbitrary
cardinality (i.e. the number of children a parent has in the physical containment structure as well
as the number of resources an employee may use is not constrained by the system but can be
customized by the administrator); this cardinality is contained in the CardinalitySpec referenced
by the LinkRule. A LinkRule can reference an BooleanAttributeType of the parent resource / us-
ing employee; in this case Links of this LinkRule can only be created for those Resources / Em-
ployees where the corresponding BooleanAttributeis true.

Attributes name (String): name of the LinkRule

Operations -

2.2.2. Class: Link

Description Base class for ResourceContainmentLink and ResourceUsageL.ink.
Attributes

Operations

2.2.3. Class: ResourceContainmentLinkRule

Description A ResourceContainmentLinkRule defines the characteristics of a consistent ResourceContain-
mentLink. It references two ResourceTypes which may be linked together by a ResourceCon-
tainmentLink.

Attributes

Operations

2.2.4. Class: ResourceContainmentLink

Description A ResourceContainmentLink references two Resources that are linked together by it; one re-
source takes the parent role, the other is its child in the pysical containment. Its consistency is
checked against the ResourceContainment LinkRule references.

Attributes

Operations

2.2.5. Class: ResourceUsagelLinkRule

Description A ResourceUsagelinkRule defines the characteristics of a consistent ResourceUsageL.ink. It ref-
erences one ResourceType and one EmployeeType whose instances may be linked together by a
ResourceUsageLink.

Attributes

Operations

2.2.6. Class: ResourceUsagelink

Meta Resource Management System

Description

Attributes

Operations

A ResourceUsagel.ink references one Resour ce and one Employee that are linked together by it.
Its consistency is checked against the ResourceUsagelinkRule it references. There may be more
than one ResourceUsagelLink at a Resource; but only one of can be active at a certain time.
startDate (Date): Time when usage starts.

stopDate (Date): Time when usage expires.

2.2.7. Class: CardinalitySpec

Description

Attributes

Operations

Specifies the minimum and maximum cardinality for a certain ResourceType, referenced by a
ResourceUsageLinkRule or a ResourceContainmentLinkRule. Example: A ResourceContain-
mentLinkRule has two ends ResourceTypel (parent) and ResourceType2 (child). The Resource-
Typel aways has the cardinality 1 while ResourceType2 has the cardinality min=1 and max=4,
this means that one specific Resource of ResourceTypel must have at least 1 and may have up
to 4 Links to Resources of ResourceType2. The CardinalitySpec may also reference a Number-
AttributeType of the ResourceTypel.

minCardinality (Number): value for the minimum cardinality; will be ignored when there is a
“min”-reference to a NumberAttributeType, in this case the NumberAttribute's value will be
used instead

maxCardinality (Number): value for the maximum cardinality; will be ignored when there is a
“max”-reference to a NumberAttributeType, in this case the NumberAttribute's value will be
used instead

2.3. Package: model.user

The following diagram depicts the classes for user and access rights management of the MRMS.

Figure 3. User and Access Rights Management Classes

Meta Resource Management System

User Role AccessRight
o 0 0 } 1 0.*
-passwordExpirationDate:Date - = | -name:String
-realMame:String -isAdministratorRale:Boolean
+indUser:User
+checkPasswordStrength:Boolean
1
1
AuthenticationData LinkAccessRight AttributeAccessRight EntityAccessRight
-userMame:String -canLink:Boolean -canRead:Boolean -canCreate:Boalean
-passwoard: String -canbUnlink:Boalean -canvyrite:Boalean -canDelete:Boalean
0. 0.x 0.
1 1 1
model.linkage.LinkRule ==metaclass== ==ghstract metaclass==
model entity. AttibuteType model.entity.EntityType
-name:String 1.* 1
-activationAttribute Type:BooleandAtty -name:Sstring 4 _riame:String

-onlyPredefinedvaluesAllowed:Bod
-mandatory:Boolean
-frozen:Boolean

2.3.1. Class: AuthenticationData

Description Vaue class, encapsulating the authentication data of a user.
Attributes userName (String): the user's name
password (String): the user's password

Operations

2.3.2. Class: User

Description Class for user accounts of the MRMS. Its instances may play Rolesin the system.
Attributes passwordExpirationDate (Date): date after which the user has to enter a new password
realName (String): real name of the user
Operations
e dtatic checkPasswordStrength(password: String): Boolean
Effect Checks, if the given password String is strong enough (minimum length,
mixed letters and numbers, ...) to be accepted by the system.
Parameters password: the password to be checked
Return The boolean value true, iff the password is strong enough.

Exceptions ---

10

Meta Resource Management System

Actor Control class of the use case “User changes password”.

e datic findUser(authData: AuthenticationData): User

Effect Searches the system for a User matching the given AuthenticationData.

Parameters authData: the AuthenticationData to search for

Return If amatching User object could be found it is returned, otherwise the opera-
tion returns the null pointer.

Exceptions ---

Actor Control class of the use case “User logsin™.

2.3.3. Class: Role

Description A Role defines which AccessRightsiits players (Users) have.
Attributes name (String): name of the Role
isAdministratorRole (Boolean): defines if Users of the Role have administration rights

Operations

2.3.4. Class: AccessRight

Description Abstract base class for accessrights. If a Role references an AccessRight it has this AccessRight.
Users have the AccessRights which the Roles they play have.

Attributes

Operations

2.3.5. Class: ResourceAccessRight

Description ~ Concrete AccessRight that defines owner's authority of working with Resources that are of a
specific ResourceType.
Attributes canCreate (Boolean): definesif Resources of the referenced ResourceType may be created

canDelete (Boolena): defines if Resources of the referenced ResourceType may be deleted

Operations

2.3.6. Class: AttributeAccessRight

Description Concrete AccessRight that defines owner's authority of working with Atrributes of a specific At-

11

Meta Resource Management System

Attributes

Operations

tributeType that belongs to a specific ResourceType.
canRead (Boolean): definesif Attributes of the referenced AttributeType may be read

canWrite (Boolean): defines if Attributes of the referenced AttributeType may be written

2.3.7. Class: LinkAccessRight

Description

Attributes

Operations

Concrete AccessRight that defines owner's authority of creating and deleting Links according to
aspecific LinkRule.

canLink (Boolean): definesif Links according to the referenced LinkRule may be created

canUnlink (Boolean): definesif Links according to the referenced LinkRule may be deleted

2.4. Package: model.filter

The following diagram depicts the classes needed to configure afilter and get a collection of Resources out of it.

Figure 4. Filter Classes

Filter

Constraint

-targetType ResourceType

+getatchingResources:Resource]

+matches:Boolean

| ?

UsageConstraint

ContainmentConstraint AttributeConstraint UsedByConstraint

-used:Boolean
-startDate: Date
-stopDate:Date

-targefType:ResourceType
-underLinked:Boalean
-free:Boolean

-targetType:AttributeType -usedBy:User

-linkahle:Boaolean
-unlinkahle:Boolean

-ovetLinked:Boolean

ExactAttributeConstraint RegionAttributeConstraint

-value:Attribute -minvalue:Attribute

-maxvalue:Aftribute

2.4.1. Class: Filter

Description

Attributes

Operations

A Filter is used to get a subset of all Resources of the referenced ResourceType. The Filter is
defined by the Constraintsit is composed of .

e getMatchingResources(): Resource][]

12

Meta Resource Management System

Effect Searches the system for Resour ces matching the referenced Constraints.
Parameters ---

Return An array of the matching Resources.

Exceptions ---

Actor Control class of the use case “Create filtered collection of resource entries’.

2.4.2. Class: Constraint

Description

Attributes

Operations

Abstract base class for constraints. Constraints are used by a Filter to describe a specific state
that Resource must fulfill to pass.

* matches(resource: Resource): Boolean

Effect Tests, if the given Resource matches this Constraint.

Parameters resource: the Resource to be tested

Return The boolean value true, iff the given Resource matches this Constraint.
Exceptions ---
Actor ClassFilter.

2.4.3. Class: AttributeConstraint

Description

Attributes

Operations

An AttributeConstraint is a concrete Constraint that checks whether an Attribute of the refer-
enced AttributeType is either equal to the referenced Attribute or lays between the two refer-
enced min- and max-Attributes.

2.4.4. Class: ContainmentConstraint

Description

Attributes

A ContainmentConstraint is a concrete Constraint that checks whether a Resource matches the
physical containment state that is described by the following attributes. A ContainmentCon-
straint references the LinkRule it refers to. If in this LinkRule the ResourceType that is to be
filtered has (1) the parent role minimum and maximum cardinality are taken from LinkRule's
CardinalitySpec and refer to the number of children; if it has (2) the client role then min = max
= 1iff the field requiresParent of the ResourceType istrue, min = max = 0 otherwise.

underLinked (Boolean): cur <min

13

Meta Resource Management System

free (Boolean): cur =0

linkable (Boolean): cur < max
unlinkable (Boolean): cur >= max
overLinked (Boolean): cur > max

Operations

2.4.5. Class: UsageConstraint
Description A UsageConstraint is a concrete Constraint that checks whether a Resource is used or unused
in agiven time period.

Attributes used (Boolean): Defines whether the filtered Resources have to be used or unused in the given
time period.

startDate (Date): Start time of the time time period.
stopDate (Date): End time of the time period.

Operations

2.4.6. Sequence diagram: Filter.getMatchingResources

The following diagram shows how afilter determines the matching resources.

Figure 5. Sequence: Filter.getM atchingResour ces

% Filter ResourceClass constraint constraintB

Client | |
getMatchlngResnurcE'_!_l getResources(ResourceType) |
far{resaurces)

matches

matches

g

3. Package: client

The following diagram depicts the main classes needed to redlize an interaction between the user and the
MRMS.

14

Meta Resource Management System

Figure 6. Control and Boundary Classes

==control==
SessionState

-sessionToken:String

+loggedin:Boolean

1

0.1 4|/ loggedin
modeluser.User

-passwordExpirationDate.Date
-realMame:String

+HindUserlser

+checkPasswordStrength:Boolean
?

==control== ViewContainer
MainController
1
1 1 | *addviewyoid
+showErrarvaid +remaoveliewvaid
+requestCaonfirmation:int +getMainFarm:Form
+startwoid
+stopvoid
+handlelserLogsinEventyoid
+handleShowhavigationPaneEventvoid 1
+handleEditResourceEventvoid
+handleCreateFiltarEventvaid
+handleSelectionChangedEventvoid
+handleUseCaseDoneEventvaid
+getSessionState:SessionState
1
%’manages
1.* 0.
==control== AbstractWiew
AbstractControl
1 0.1

+irvakevaid
+oreateView AbstractView
+disposevoid

3.1. Class: SessionState

Description A SessionState describes a session of interaction between the MRMS and a user. A User is
logged in in a SessionState if it references that User. If logged in it has a remote reference to an
instance of MrmsFacade on the server which can be used by the control to communicate with

the server.
Attributes

Operations

¢ loggedin(user: User): Boolean

Effect
Parameters
Return
Exceptions

Actor

Checks whether the given User islogged in in this SessionSate.

The boolean value true, if the given User islogged in in this SessionSate.

MainController

3.2. Class: MainController

Description ~ The MainController manages concrete AbstractControls. It provides a ViewContainer were Ab-
stractViews of AbstractControls may be plugged in. It is associated with a SessionState that

15

Meta Resource Management System

Attributes

Operations

provides areference to the suitable MRMS server facade. Managed AbstractControls may inter-
act with the MainController by using Events. For this the MainController provides delegate op-
erations that may be registered at the AbstractControls. Moreover it contains static helper opera-
tions for showing dialogs to the user (used by AbstractControls). The MainController imple-
ments the Mediator pattern as described by the GoF. See also Section 3.7, “ Sequence diagrams
for package model.client” [].

o static showError(text: String): void

Effect An error pop up is shown to the user.
Parameters text: Error message

Return

Exceptions ---

Actor AbstractControls

e dtatic requestConfirmation(text: String): int

Effect A confirmation dialog is shown to the user.
Parameters text: Confirmation message
Return Anint value that is representing the decision of the user
Exceptions ---
Actor AbstractControls
e dart(): void
Effect Activates default controls, MenuBar- and ToolBarControl, shows application
window and starts event handling.
Parameters ---
Return

Exceptions ---

Actor User

e stop(): void

Effect Disposes the application and al its controllers.
Parameters ---
Return

Exceptions ---

16

Meta Resource Management System

Actor

MainController

handleUserL ogsinEvent(sender: AbstractControl, args: System.Args): void

Effect

Parameters

Return

Exceptions

Actor

A UserLogsinContral is created and invoked. Its view is plugged into the
ViewContainer.

sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

AbstractControls using an EventHandle

showNavigationPaneEvent(sender: AbstractControl, args: System.Args): void

Effect

Parameters

Return

Exceptions

Actor

An NavigationControl for the selected Resource is created and invoked. Its
view is plugged into the ViewContainer.

sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

AbstractControls using an EventHandle

handleEditResourceEvent(sender: AbstractControl, args: System.Args): void

Effect

Parameters

Return

Exceptions

Actor

An EditResourceControl for the selected Resource is created and invoked
(uses static createEditResourceControl()) .

sender: The Sender of the event that invoked this operation

args. Arguments of the event that invoked this operation

AbstractControls using an EventHandle

handleCreateFilterEvent(sender: AbstractControl, args: System.Args): void

Effect

Parameters

A CreateFilterControl is created and invoked. Its view is plugged into the
ViewContainer.

sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

17

Meta Resource Management System

Return

Exceptions ---

Actor AbstractControls using an EventHandle

¢ handleUseCaseDoneEvent(sender: AbstractControl, args: System.Args): void

Effect The sender (concrete AbstractControl) is disposed and its view is removed
from the ViewContainer.

Parameters sender: The Sender of the event that invoked this operation
args: Arguments of the event that invoked this operation

Return

Exceptions ---

Actor AbstractControls using an EventHandle
* handleSelectionChangedEvent(sender: AbstractControl, args: System.Args): void

Effect All controls are informed about the new selection by an event.

Parameters sender: The Sender of the event that invoked this operation
args: Arguments of the event that invoked this operation

Return

Exceptions ---

Actor AbstractControls using an EventHandle

Figure7. State chart: MainController

18

Meta Resource Management System

running

LUBER_LOGS_IMN_FAILURE/ispos

[not logged in \l {"logged in

USER_LOGS)] IMiactivatellzerLogs USER_LOGE_OUTractivatel=zerlo
InCantrol geOutContrpl

USER_LOGS_OUT_FAIUURE/isp

osellserLogsOutCaontral
elJserLogglnCaontrol
" logaing in logoing out
E USER_LOGS_IN_SUCCESSidisp USER_LOGS_OUT_SUCCESSIdis
oseUserLogsinCantrol posellserLogsQutContral
Events:
USER_LOGS_IN: The user requested the systemn to log in. applicationClose

LSER_LOGE_IN_SUCCESS: The use case "userlogs in" succeeded.
LISER_LOGE_IM_FAILURE: The use case "user logs in” failed orwas aborted by the user.

LSER_LOGE_CUT: The user requested the system to log out.
LISER_LOGS_OUT_SUCCESE: The user confirmed the log out dialog
USER_LOGS_OUT_FAILURE: The user cancelled the log out dialog

3.3. Class: AbstractControl

DescriptionUser logsin

Attributes

Operations

Base class for all concrete use case controllers. Encapsulates the common control
flow. See also Section 3.7, “ Sequence diagrams for package model.client” [].

e invoke(): void

Effect Constructor operation that activates this AbstractControl in-
stance.

Parameters ---

Exceptions ---

Actor MainController

e createView(): AbstractView

Effect The AbstractControl istold to create its view component.
Parameters -
Return The created view component
Exceptions ---
Actor MainController
e dispose(): void

19

Meta Resource Management System

Effect Destroys the AbstractControl and its view component.
Parameters ---

Return

Exceptions ---

Actor MainController

3.4. Class: ViewContainer

Description

Attributes

Operations

A ViewContainer is a component were the MainController may plug in AbstractViews of Ab-
stractControls. See also Section 3.7, “ Sequence diagrams for package model.client” [].

addView(view: AbstractView,location: int): void

Effect

Parameters

Return
Exceptions

Actor

Adds the given AbstractView.
view: AbstractView to be added

location: An identifier determining the location to place the AbstractView

MainController

removeView(view: AbstractView): void

Effect
Parameters
Return
Exceptions

Actor

Removes the given AbstractView.

view: AbstractView to be removed

MainController

3.5. Package: client.control

Figure 8. Package: client.control

20

Meta Resource Management System

==contral==
client.AbstractControl

+invokevaid

+createView Abstractview

+disposevoid

EditResourceControl

NavigationControl

+invokemvaid
+createView Abstractview
+handleDataReceivedEventvoid

+invokevoid
+createliew Abstractyiew

Events

Events

Abstractiiew
clientview.EditResourceview

Abstractview
client view.NavigationWiew

+handleRequesiEditResourcetDat)
[

CreateFliterControl

UserLogsInControl

+invokevoid

+createliew Abstractyiew
+handleDataReceivedEventvoid
+handleCloselistEventvoid

+invokemvaid
+createViewAbstract/iew
+handleDataReceivedEventvoid

Events

Events

Abstractview
chientview CreateFilterview

Abstractyiew
clientview.Userl ogsinVfiew

+handleRequesiFilerConstraint=Evy

+handleShowResourcelistEventvai
L

+handleRequestiuthentificationDig)
[

MenuBarControl | | ToolBarControl
Events Events
AhstractView Abstractyiew
clientview.MenuBarview clientview.ToolBarView
L] L]

3.5.1. Class: UserLogsInControl

Description

package model.client” [].

Attributes

Operations

e invoke(sender: AbstractControl, args. System.Args): void

Effect

Parameters

A concrete AbstractControl for logging a user in. See also Section 3.7, “ Sequence diagrams for

The user isrequested to enter his/her AuthentificationData.

sender: The Sender of the event that invoked this operation

args. Arguments of the event that invoked this operation

Return

Exceptions ---

Actor

MainController

o createView(): AbstractView

Effect

An UserLogslinView is created and returned.

21

Meta Resource Management System

Parameters -

Return The created UserLogslnView
Exceptions ---

Actor MainController

¢ handleDataReceivedEvent(sender: AbstractControl, args: System.Args): void

Effect Either the user getslogged in or an error dialog is shown to him.

Parameters sender: The Sender of the event that invoked this operation
args: Arguments of the event that invoked this operation

Return

Exceptions ---

Actor UserLogsinView

3.5.2. Class: NavigationControl

Description A concrete AbstractControl for navigating entities managed by the MRMS system. See also
Section 3.7, “ Sequence diagrams for package model.client” [].

Attributes

Operations

e invoke(sender: AbstractControl, args: System.Args): void

Effect The NavigationControl waits for user's interaction.

Parameters sender: The Sender of the event that invoked this operation
args: Arguments of the event that invoked this operation

Return

Exceptions ---

Actor MainController

e createView(): AbstractView

Effect An NavigationView is created and returned.
Parameters ---

Return The created NavigationView

Exceptions ---

22

Meta Resource Management System

Actor MainController

3.5.3. Class: EditResourceControl

Description A concrete AbstractControl for editing Resources managed by the MRMS system. See also Sec-
tion 3.7, “ Sequence diagrams for package model.client” [].

Attributes
Operations
e invoke(sender: AbstractControl, args. System.Args): void
Effect Locks the Resource that shall be edited using the MrmsFacade. The user is
reguested to enter the changes to be performed.
Parameters sender: The Sender of the event that invoked this operation
args. Arguments of the event that invoked this operation
Return
Exceptions ---

Actor MainController

e createView(): AbstractView

Effect An EditResourceView is created and returned.
Parameters -

Return The created EditResourceView

Exceptions ---

Actor MainController

¢ handleDataReceivedEvent(sender: AbstractControl, args. System.Args): void

Effect Updates the edited Resour ce using the MrmsFacade or shows an error dialog.
Parameters sender: The Sender of the event that invoked this operation
args. Arguments of the event that invoked this operation
Return
Exceptions ---

Actor EditResourceView

23

Meta Resource Management System

3.5.4. Class: CreateFilterControl

Description A concrete AbstractControl editing Resources managed by the MRMS system. See also Sec-
tion 3.7, “ Sequence diagrams for package model.client” [].

Attributes
Operations

e invoke(sender: AbstractControl, args: System.Args): void

Effect The user is requested to enter the filter constraints.

Parameters sender: The Sender of the event that invoked this operation
args. Arguments of the event that invoked this operation

Return

Exceptions ---

Actor MainController

e createView(): AbstractView

Effect An CreateFilterView is created and returned.
Parameters ---

Return The created CreateFilterView

Exceptions ---

Actor MainController

¢ handleDataReceivedEvent(sender: AbstractControl, args: System.Args): void

Effect Getsalist of matching resources and presentsit to the user.

Parameters sender: The Sender of the event that invoked this operation
args. Arguments of the event that invoked this operation

Return

Exceptions ---

Actor CreateFilterView

e handleCloseListEvent(sender: AbstractControl, args: System.Args): void

Effect Terminates the CreateFilterControl.
Parameters sender: The Sender of the event that invoked this operation
args. Arguments of the event that invoked this operation

Return

24

Meta Resource Management System

Exceptions ---

Actor CreateFilterView

3.5.5. Class: MenuBarControl

Description A concrete AbstractControl that is managing an client's application window menu bar.
Attributes
Operations

e invoke(sender: AbstractControl, args. System.Args): void

Effect

Parameters sender: The Sender of the event that invoked this operation
args. Arguments of the event that invoked this operation

Return

Exceptions ---

Actor MainController

e createView(): AbstractView

Effect An MenuBarView is created and returned.
Parameters -

Return The created MenuBar View

Exceptions ---

Actor MainController

3.5.6. Class: ToolBarControl

Description A concrete AbstractControl that is managing an client's application window tool bar.
Attributes -
Operations

e invoke(sender: AbstractControl, args: System.Args): void

Effect -

Parameters sender: The Sender of the event that invoked this operation

25

Meta Resource Management System

args: Arguments of the event that invoked this operation
Return
Exceptions ---

Actor MainController
e createView(): AbstractView

Effect An ToolBarView is created and returned.
Parameters -

Return The created ToolBarView

Exceptions ---

Actor MainController

3.6. Package: client.view

Figure 9. Package: model.view

client.Abstract\iew

Ay
UserLogsinView EditResourceView Navigation\iew CreateFilterView
+handleReguestiuthentificationDataBventvoid +handleReguestEditResourcetDataBventvoid +handleReguestFilterConstraintsEventvaid
+handleShowResourcelistEventvoid
Events Evenls Events Events
AbstractControl AbstractControl AbstractControl AbstractControl
client.control.UserLogsIinControl .control.EditResourceControl client.control.NavigationControl client.control.CreateFliter Control
+invoke:void +invoke:void +invake:woid +invake:woid
+createlisweAbstractview +rreateliswAbstractview +createviewAbstractview +createviewAbstractview
+handleDataReceivedEventvoid +handleDataReceivedEventvoid @ +handleDataReceivedEventvoid
L L +handleCloseListEventvoid
»
MenuBarView ToolBarView
Events Events
AbstractControl AbstractContral
client.control. MenuBarControl client.control.ToolBar Control
” ”

3.6.1. Class: UserLogsInView

26

Meta Resource Management System

Description A concrete AbstractView representing a log-in-dialog.
Attributes

Operations handleRequestA uthentificationDataEvent(sender: AbstractControl, args. System.Args): void

3.6.2. Class: NavigationView

Description A concrete AbstractView for navigating entities managed by the MRM S system.
Attributes

Operations

3.6.3. Class: EditResourceView

Description A concrete AbstractView for editing Resources managed by the MRM S system.
Attributes

Operations handleRequestEditResourcetDataEvent(sender: AbstractControl, args: System.Args): void

3.6.4. Class: CreateFilterView

Description A concrete AbstractView for creating a Filter.
Attributes
Operations handleRequestFilterConstrai ntsEvent(sender: AbstractControl, args: System.Args): void

handleShowResourceListEvent(sender: AbstractControl, args: System.Args): void

3.6.5. Class: MenuBarView

Description A concrete AbstractView for that shows a menu bar.
Attributes

Operations

3.6.6. Class: ToolBarView

Description A concrete AbstractView that shows atool bar.
Attributes

Operations

3.7. Sequence diagrams for package model.client

These diagrams verify the model.client package.

27

Meta Resource Management System

3.7.1. Sequence diagram: Application start

The following diagram illustrates the starting process of the application.

Figure 10. Application start

User
1: starts Apllication MainContraller
_ 7=
0 stant)void
1.1.1: new ViewContainer
==

.2 activateDefaultCantrollers

.21 activateenuBarControlvoid

11217 newy MenuBarCantral
===

L

For a detailed description of further steps BI

to activate a contral, see the seq. chart
named ControlActivationExample.

1.2.2: activateToolBarContralwoid

1.1.2.21: new ToolBarControl

|

1.1.2.3: getMainFormJ:Form

AYindaws. Forms frame

|

I

|

|

componentis returned and used |
N.2.4 runiyvoid as main application form far the |
Application.run{=Farm=) APl call. |
|

|

|

|

|

|

3.7.2. Sequence diagram: AbstractControl's life cycle

The following diagram illustrates the life cycle of an AbstractControl and its view.

Figure 11. AbstractControl'slife cycle

28

Meta Resource Management System

someEventSource
AbstractContral MainContraller ViewContainer

[
1 handle some use case event |

1.1 new i) AbstractControl

1.2; createiewd) Abstractview

1.210: new() | Abstractview

-

1.4 invoke()void

4.1 perfarming ussl case

i

1.4.1.1.2: dispose(void

141121 disposes

——]

3.7.3. Sequence diagram: User logs in

The following diagram illustrates the object interaction while performing the use case "User logsin"

Figure 12. User logsin

29

Meta Resource Management System

i UserClass

MainController

startSystemn

SessionState

new

¥

UserLogsinController
imvake

¥

I

equestiuthentication

[T

fii==

User
new

¥

f
|
|
|
| checkAuthenticationData
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
L=t
requestiuthentication J
|
|
|
|
|
|
|
|
|

| showhdainDialog

o

loginllser Q
|
|
|
|
|
|
|
|
|
|

-
e

3.7.4. Sequence diagram: Create filtered collection of resource
entries

The following diagram illustrates the object interaction while performing the use case "Create filtered collection
of resource entries'

Figure 13. Createfiltered collection of resource entries

30

Meta Resource Management System

% CreateFilterifiew CreateFliterControl MrmsFacade

=

1]

o
1=

1 handleReqguestFilterConstraintsEvent{ovoid

1.1: request filter constraints

__________ == 1.2: handleDataReceivedEvent]) void

i

2 getResources(String Filtery Resourcelist

3 handleShowResourcelistEvent(void I:I

ERR

4:close listview

T
|
|
|
|
L 4.1 handleCloselistEvent(void
|
|
|
|
|

3.7.5. Sequence diagram: Edit resources

The following diagram illustrates the object interaction while performing the use case "Edit Resources’

Figure 14. Edit resources

% EditResourceView EditResourceCantral MrmsFacade

[|
| |
| acguireLock{EntitylDvoid |
|
|

=
W
1]
|=

o

handleReguestEditResourcetDataBvent(void

request edit resource data
=i}

—————————— =

|
|
|
|
|
handleDataReceivedEventvoid :
|
|
|
|

updateResourceAndReIea%eLock(Resource):vuid

L
| [i
| walidated
|
|
|
|
| I
| I
| I
| |
| I
| I

4. Package: server

The client's interface to the server application is the MrmsFacade. Every instance of an MrmsFacade has a
FacadeContext that provides access to a central LockManager as well as to the PersistenceLayer.

31

Meta Resource Management System

Figure 15. The MRM S Server Core Classes

MrmsFacade

==canstructor==
+oginiuserMame:String, password: String): String
+acquirelock{id EntitylDowoid

+releaselockdid: EntitylDywvaid

+acquirelock{id EntityTypelDvaid
+releaselock(id:EntitTypelDlwaid
+getResourceTypes(:ResourceType[
+getEmploveeTypes(:EmployeeType[
+getEntities(filter:Filter) EntitiesList
+updateEntitvAndReleaselock{entity: Entity)void
+getlsers(User]

+getRoles(userUserkRole]]
+gethccessRights(roles:Role[):AccessRight]
+logout(yvaid

FacadeContext
0. n.*
1 1
LockManager PersistencelLayer
+acquirelockd:Entityl Dy void +ogdResourceTypedd EntitTypelD).ResourceType
+releaselock{id:EntitylD)waid +oadEmployeeTypedid EntitTyvpelDY.EmployesType
+acguirelockdid:EntityTypelDywvaid +oadResaurcelid:EnitityD):Resaurce
+releaselock{id:EntityTypelDhvoid +oadEmployeeadid EntitylD:Employes
+UpdateResourcedres:Resadrcelvoid
1 +UpdateEmployveaiempEmploves)yaid
nx

muodel.entity. EntitylD

-unigquell:int

-revision:int

7

4.1. Class: MrmsFacade

Description ~ The MrmsFacade provides the server's functionality to connected clients. Every instance refer-
ences one FacadeContext which provides access to a central LockManager as well as to the
Persistencelayer.

Attributes ---
Operations
* login(user: User): MrmsFacade

32

Meta Resource Management System

Effect

Parameters
Return
Exceptions

Actor

Constructor operation. Verifies and authorizes the given User and initiaizes
a new MrmsFacade on success. If the User could not be authorized a Login-
FailedException is thrown.

user (User): the User object identifying and authorizing the user to log in.

An instance of MrmsFacade

LoginFailedException

UserLogsinControl

acquireLock(id:Entityl D): void

Effect

Parameters
Return

Exceptions

Actor

Requests to acquire alock for the given EntitylD at the central LockManager
instance.

id (Entityl D): the EntitylD of the Entity that should be locked.
LockNotAvailableException - if thei d isaready locked
RevisionChangedException - if thei d'srevision is not current

EditResourceControl

releasel ock(id: EntitylD): void

Effect

Parameters
Return
Exceptions

Actor

Requests to release a lock for the given EntitylD at the central LockManager
instance.

id (Entityl D): the EntitylD of the Entity to unlock

EditResourceControl

acquireL ock(id:Entity Typel D): void

Effect

Parameters
Return

Exceptions

Requests to acquire a lock for the given EntityTypelD at the central Lock-
Manager instance.

id (EntityTypel D): the EntityTypel D of the EntityType that should be locked.

LockNotAvailableException - if thei d is already locked

33

Meta Resource Management System

Actor

RevisionChangedException - if thei d's revision is not current

EditResourceControl

releasel_ock(id: EntityTypel D): void

Effect

Parameters
Return
Exceptions

Actor

Requeststo release alock for the given EntityTypel D at the central LockMan-
ager instance.

id (EntityTypel D): the Entity Typel D of the EntityType to unlock

EditResourceControl

getResourceTypes(): ResourceType]]

Effect
Parameters

Return

Exceptions

Actor

Getter without side effects.

An array with al ResourceTypes that the administrator has configured in the
system.

NavigationControl

getEmployeeTypes(): EmployeeType[]

Effect
Parameters

Return

Exceptions

Actor

Getter without side effects.

An array with all EmployeeTypes that the administrator has configured in the
system.

NavigationControl

getEntities(filter: Filter): EntitiesList

Effect

Reguests alist of Entitys matching the given Filter; has no side effects.

34

Meta Resource Management System

Parameters
Return
Exceptions

Actor

filter (Filter): the Filter that all returned entities must match.

an EntitiesList containing al matching Entities

All controls that need to access entities.

updateEntityAndRel easel ock(entity: Entity): void

Effect
Parameters
Return
Exceptions

Actor

Updates the given Entity object and releases the associated lock.

entity (Entity): the Entity to update

EditEntityControl

getUsers(): User[]

Effect
Parameters
Return
Exceptions

Actor

getRoles(user:

Effect
Parameters

Return

Exceptions

Actor

Getter without side effects.

An array with all Usersthat the administrator has configured in the system.

NavigationControl

User): Rol{[]

Getter without side effects.
user (User): the user whose roles should be returned

An array with all Roless that the administrator has configured in the system
for a specifc user.

NavigationControl and EditUserControl

getAccessRights(roles: Role[]): AccessRight([]

Effect

Getter without side effects.

35

Meta Resource Management System

Parameters
Return
Exceptions

Actor

¢ logout(): void

Effect

Parameters
Return
Exceptions

Actor

roles (Rol€]]): the roles whose access rights should be returned
An array with merged AccessRights that all given Roles have.

NavigationControl and EditUserControl

Informs the MrmsFacade that the client does not need its services anymore;
any open locks will be released.

This method is automatically called if the client did not do any request for a
specific amount of time (15 Min).

MainController

4.2. Class: FacadeContext

Description

Attributes

Operations

The FacadeContext provides a context for a MrmsFacade which consists of references to the
central instances of LockManager and Persistencel ayer.

4.3. Class: LockManager

Description

Attributes

Operations

The LockManager holds information about locked Entitys and EntityTypes. Client classes may
acquire and release locks with instances of this class.

e acquireLock(id:Entityl D): void

Effect

Parameters

Return

Requests to acquire a lock for the given EntitylD at the central LockManager
instance.

id (Entityl D): the Entityl D of the Entity that should be locked.

36

Meta Resource Management System

Exceptions

Actor

LockNotAvailableException - if thei d is already locked
RevisionChangedException - if thei d'srevision is not current

EditResourceControl

releasel_ock(id: EntitylD): void

Effect

Parameters
Return
Exceptions

Actor

Requests to release a lock for the given EntitylD at the central LockManager
instance.

id (Entityl D): the Entityl D of the Entity to unlock

EditResourceControl

acquireL ock(id:Entity Typel D): void

Effect

Parameters

Return

Exceptions

Actor

Requests to acquire a lock for the given EntityTypelD at the central Lock-
Manager instance. A lock on an EntityType also locks all Entitys of this type
and no Entitys of this type may be created.

id (EntityTypel D): the EntityTypel D of the EntityType that should be locked.
LockNotAvailableException - if thei d is already locked

RevisionChangedException - if thei d's revision is not current

EditResourceControl

releasel ock(id: EntityTypel D): void

Effect

Parameters
Return
Exceptions

Actor

Regueststo release alock for the given EntityTypel D at the central LockMan-
ager instance.

id (EntityTypel D): the EntityTypel D of the EntityType to unlock

EditResourceControl

37

Meta Resource Management System

4.3.1. Sequence diagrams: Locking

Figure 16. Acquire lock without problems

ListControl
EditResourceCantral

getResources(FiterResourcelist

|=

¥

Facaded
MrmsFacade

LockManager

Resourcelist

editResource

editDatafndSave

i

fa== acquireLockiEntitylD) void

L
==L updateResourcesndReleaselockiResource)void

UpdateResource

Figure 17. Acquirelock of already locked entity

ListControl
EditResourceCaontral

I=

acquireLock(Entityl Covoid

releaselock{EntityD)void

Facadef

nvoke |

yetResources(Filter:Resourcelist

MrmsFacade LockManager

Resourcelist

i

ediiResource

= acquirelock(EntityD) void
Ll

—L atouireLock(EntitylDvoid)

LockMNotavailableException B.

i

Figure 18. Acquirelock of a outdated entity

acguireLock({EntitdD)void ‘J—A-
|
|
|
|
|
|
|
|

FacadeB
MrmsFacade
User B
T 248
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| L
FacadeB
MrmsFacade

o

=
[

|m

acquireLock

38

Meta Resource Management System

ListControl
EditResourceControl

User A

Facaden
MrmsFacade

LockManager

FacadeB
MrmsFacade

=
3
H]

invoke 1

¥

getResources(Filter;:ResourceList

Resourcel ist

N

editResource

b

|acqu\reLunk(Enmle) woid

|
updaleﬁeqnume.ﬂmﬂeleaseLnEk(Resnume) void
==}

acquireLack(EntibiDIvold | 2ol ockEntiniDyvoidl

RevisionChangedException

[

|

T
getResource(EntitdD) void |

acquirel ack(EntityiD) void acquireLock(EntitdDyvoidl
informThathlewRevisionHasBeenLoaded

4.4. Class: PersistencelLayer

Description Implements a persistence layer for objects of MRMS model classes. It provides atomic load, up-

4|

releaseLock{EntityDy:vaid

acguireLock{EntitylD)void

updateResource

Mo

|l

date and delete methods for all important model classes aswell as query functionality.

Attributes

Operations

5. Appendix: .NET Event Handling

The MRMS is implemented for the .NET platform and therefore partly builds up on the .NET model for event

handling. The following two figures are an overview on how that mechanism works.

Figure 19. Classes within the .NET event model

39

Meta Resource Management System

A'delegate” is 2 special method template, that allows us [
0 pass methods of a class Ato another class B,

SomebBrentSource t:l'}." Wrapping therm with the dEIEgatE.
Fassed methods rmay then be called through the
Z==pyent=== delegate method.
-someEventSomeEventHandler Delegates may merge their registered
mMethods with the "+" operatar.
-~
-
-
o System.Fventhrgs
r
I
|
I
|
|
==felegate==
SomeEventHandler
SomeEventirgs
+handleSomeEventyoid Uses
-someData: String
D"*
infarms registers at
0.
SomeEventSink Aclass is an event sink, if it defines

a method with the same sighature

asthe corresponding events delegate. If
+handleSomeEventvoid this applies, the method can be registered
atthe delegate using the "+=" operatar.

=delagate= += new =delegate_type={=method=)

Figure 20. Sequence: Sample setup and action

40

Meta Resource Management System

eventSource eventSink1 eventSink2
SomeEventSource Code: SomeEventSink SomeEventSink
eventSource eventDelegate +=
new SomeEventHandlerithis handleSomeEvent);

eventDelegate

10 new SameEventHandler

|
| — 2 register sink

[
|
|
|
|
|
|
|
|
|
)]
-
.-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3 register sink

H

Code:
?&Event eventDelegatethis new SomeEventaros(.)); Il'
1
L
eventirgs | /
417 new | /
| £
| i/
| ;
| S
ki
4.2 handleSomeBvent(object Eventarg s)void I,
=rh

4.2.1 handleSomeEvent

4211 gethrguments

4.2.2 handleSomeEvent

:

a
-

4.3 delete

|
|
4#.2.1: gethrguments
|
|
|
|
|
|
|
|
|
|
|

6. Appendix: Use Cases

These are the use cases derived from the additional functionality “ Resource Reservation”.

6.1. Create resource reservation

God A new reservation for aresource is created.

Category Primary

External Actors User

Precondition A user islogged in who has proper access rights to create the new resource reser-
vation.

Triggering Event The user requests the system to create a new resource reservation.

41

Meta Resource Management System

Postcondition Success
Postcondition Failure

Description

Extensions

Alternatives

Additional Requirements

Annotation

A new resource reservation has been created according to the users inpuit.

No new resource reservation has been created.

1. The system requests the user to choose the resource, start time, end time of
the reservation and the customer.

2. The user determines resource reservation and submits his input.

3. The system creates a new resource reservation.

6.2. Delete resource reservation

Goal
Category
External Actors

Precondition

Triggering Event
Postcondition Success
Postcondition Failure

Description

Extensions

Alternatives

Additional Requirements

Annotation

The reservation for aresource is del eted.
Primary
User

A user is logged in who has proper access rights to delete the resource reserva-
tion.

The user requests the system to delete a resource reservation.
The resource reservation has been deleted.

The resource reservation has not been del eted.

1. The system requests the user to choose a resource reservation.
2. The user determines the resource reservation to del ete and submits his input.

3. The system deletes the resource reservation.

6.3. Change resource reservation

Goal

The reservation for aresource is changed.

42

Meta Resource Management System

Category
External Actors
Precondition

Triggering Event

Postcondition Success

Postcondition Failure

Description

Extensions
Alternatives
Additional Requirements

Annotation

Secondary
User
A user islogged in.

The user requests the system to create a filtered collection of resource reserva
tions.

The user is shown a collection of resource reservations that passed the filter he
created.

1. The system requests the user to choose a resource reservation for changing.

2. The user determines the resource reservation to change and submits his in-
put.

3. The system changes the resource reservation.

6.4. Create filtered collection of resource reservation

entries
Goal

Category
Externa Actors

Precondition

Triggering Event
Postcondition Success
Postcondition Failure

Description

Extensions

Collect a set of resources reservations meeting a specific criterion and offer it to
the user for further processing.

Secondary
User

A user islogged in who has proper access rights to change the resource reserva-
tion.

The user requests the system to change a resource reservation.
The resource reservation has been changed.

The resource reservation has not been changed.

1. The system requests the user to configure a filter listed resource reserva-
tionswill have to pass

2. The system collects all resource reservations passing the specified filter and
offers them to the user for further processing.

43

Meta Resource Management System

Alternatives
Additional Requirements

Annotation

