
Meta Resource Management System
Design Model

René Freude (707168) <rene.freude@web.de>
Henry Hinze (681566) <henry@lilit.net>

Daniel Sadilek (707297) <sadilek@tfh-berlin.de>
Stephan Weiß (706830) <steph.weiss@web.de>

Copyright © 2003

2003-11-03

Revision History
Revision 0.1 2003-05-19

Initial public release.
Revision 0.2 2003-06-09

Corrected some cardinalities, extended descriptions, added operations.
Revision 0.3 2003-06-15

Added "user logs in" sequence diagram.
Revision 0.4 2003-06-23

Extended from static model to analysis model.
Revision 0.5 2003-10-06

Incorporated optional feature "Resource Reservation" (see appendix of this document for the use
cases derived from that feature); refined package structure; introduced distinction between physical

resource containment hierarchy and resource usage.
Revision 0.6 2003-10-20

Extended from analysis model to design model.
Revision 0.7 2003-11-03
Refined model for server and client; added sequence diagrams for verification.

This document contains the class diagrams and class descriptions that resulted from the static
analysis and the design analysis as well as sequence diagrams and state chart diagrams that we
used to verify the class model.

Table of Contents
1. Overview ... 2
2. Package: model ... 3

2.1. Package: model.entity .. 3
2.1.1. Class: EntityType ... 4
2.1.2. Class: EntityTypeID .. 4
2.1.3. Class: ResourceType ... 4
2.1.4. Class: EmployeeType .. 5
2.1.5. Class: Entity .. 5
2.1.6. Class: EntityID ... 5
2.1.7. Class: Resource .. 5
2.1.8. Class: Employee ... 5
2.1.9. Class: AttributeType ... 5
2.1.10. Class: BooleanAttributeType ... 6
2.1.11. Class: NumberAttributeType ... 6
2.1.12. Class: TextAttributeType .. 6
2.1.13. Class: Attribute ... 6
2.1.14. Class: BooleanAttribute .. 6
2.1.15. Class: NumberAttribute .. 7
2.1.16. Class: TextAttribute ... 7

2.2. Package: model.linkage .. 7
2.2.1. Class: LinkRule .. 7

1

2.2.2. Class: Link .. 8
2.2.3. Class: ResourceContainmentLinkRule .. 8
2.2.4. Class: ResourceContainmentLink .. 8
2.2.5. Class: ResourceUsageLinkRule ... 8
2.2.6. Class: ResourceUsageLink ... 8
2.2.7. Class: CardinalitySpec ... 9

2.3. Package: model.user .. 9
2.3.1. Class: AuthenticationData ...10
2.3.2. Class: User ...10
2.3.3. Class: Role ...11
2.3.4. Class: AccessRight ...11
2.3.5. Class: ResourceAccessRight ..11
2.3.6. Class: AttributeAccessRight ..11
2.3.7. Class: LinkAccessRight ..12

2.4. Package: model.filter ..12
2.4.1. Class: Filter ..12
2.4.2. Class: Constraint ...13
2.4.3. Class: AttributeConstraint ...13
2.4.4. Class: ContainmentConstraint ..13
2.4.5. Class: UsageConstraint ...14
2.4.6. Sequence diagram: Filter.getMatchingResources ...14

3. Package: client ...14
3.1. Class: SessionState ...15
3.2. Class: MainController ...15
3.3. Class: AbstractControl ..19
3.4. Class: ViewContainer ...20
3.5. Package: client.control ..20

3.5.1. Class: UserLogsInControl ...21
3.5.2. Class: NavigationControl ..22
3.5.3. Class: EditResourceControl ...23
3.5.4. Class: CreateFilterControl ...24
3.5.5. Class: MenuBarControl ...25
3.5.6. Class: ToolBarControl ..25

3.6. Package: client.view ...26
3.6.1. Class: UserLogsInView ..26
3.6.2. Class: NavigationView ...27
3.6.3. Class: EditResourceView ..27
3.6.4. Class: CreateFilterView ..27
3.6.5. Class: MenuBarView ..27
3.6.6. Class: ToolBarView ...27

3.7. Sequence diagrams for package model.client ...27
3.7.1. Sequence diagram: Application start ..28
3.7.2. Sequence diagram: AbstractControl's life cycle ..28
3.7.3. Sequence diagram: User logs in ..29
3.7.4. Sequence diagram: Create filtered collection of resource entries30
3.7.5. Sequence diagram: Edit resources ...31

4. Package: server ..31
4.1. Class: MrmsFacade ..32
4.2. Class: FacadeContext ..36
4.3. Class: LockManager ...36

4.3.1. Sequence diagrams: Locking ..38
4.4. Class: PersistenceLayer ...39

5. Appendix: .NET Event Handling ...39
6. Appendix: Use Cases ...41

6.1. Create resource reservation ..41
6.2. Delete resource reservation ..42
6.3. Change resource reservation ...42
6.4. Create filtered collection of resource reservation entries ...43

1. Overview

Meta Resource Management System

2

So far, the design model only covers a subset of all use cases - completely defined in the document “Use Cases”.
The remaining use cases will be considered during the next revisions of this document. The use cases covered so
far are:

• User logs in

• Create filtered collection of resource entries

• Edit resources

This document is organized along the package structure of the MRMS. Every package describes one aspect of
the system:

• model.entity: The MRMS can handle resources and the employees; the attributes that are to be saved for
each resource type and employee type can be configured by an administrator. This common functionality is
pulled up to the super type Entity. The package model.entity contains the classes to handle entities
(resources, employees) and their attributes (number, text, boolean).

• model.linkage: Resources and employees do not exist detached. Resources can be organized in a physical
containment structure (e.g. a room contains workplaces, workplaces contain a computer, and so on) and re-
sources can be used by employees. The package model.linkage contains the classes that are necessary to rep-
resent these links.

• model.user: The users of the system need different access rights according to the role they play in the busi-
ness. The package model.user contains the classes that represent the rights users have to create and delete
entities, edit their attributes and create links.

• model.filter: Creating a filtered collection of resources is a complex function that is required in different use
cases. The package model.filter contains the classes needed to configure a filter with constraints and execute
it.

• client: Classes needed to realize an interaction between the user and the MRMS.

• server: Classes for the MRMS server.

(The classes imported from others packages are colored yellow.)

2. Package: model
This package does not contain any classes but only the subpackages entity, linkage, user and filter.

2.1. Package: model.entity
The following diagram depicts the classes to handle entities (resources, employees) and their attributes (number,
text, boolean).

Figure 1. Entity Classes

Meta Resource Management System

3

2.1.1. Class: EntityType

Description An EntityType has a name and specifies (by composition) the Attributes that an Entity of this
type has, it references a unique EntityTypeID.

Attributes name (String): the name of the EntityType

Operations ---

2.1.2. Class: EntityTypeID

Description An EntityTypeID is a unique identifier for an EntityType.

Attributes uniqueID (int): an integer which is unique within the set of all EntityTypes

revision (int): an integer which is incremented by the server with every change; this field is used
by the server to verify that the EntityType a client refers to has not changed since the client re-
ceived the EntityType's data

Operations ---

2.1.3. Class: ResourceType

Description A ResourceType is a specialised EntityType for defining Resources.

Attributes parentRequired (Boolean): specifies whether instances of this ResourceType must have a parent
Resource

Meta Resource Management System

4

Operations ---

2.1.4. Class: EmployeeType

Description An EmployeeType is a specialised EntityType for defining Employees.

Attributes ---

Operations ---

2.1.5. Class: Entity

Description An Entity is composed of its Attributes and is an instance of an EntityType which specifies
which Attributes the Entity may have, it references a unique EntityID.

Attributes ---

Operations ---

2.1.6. Class: EntityID

Description An EntityID is a unique identifier for an Entity.

Attributes uniqueID (int): an integer which is unique within the set of all Entitys

revision (int): an integer which is incremented by the server with every change; this field is used
by the server to verify that the Entity a client refers to has not changed since the client received
the Entity's data

Operations ---

2.1.7. Class: Resource

Description A Resource is a specialised Entity for representing real-life-resources and is an instance of a Re-
sourceType which specifies if this Resource must have a parent Resource within the Resources-
Containment-Hierarchy.

Attributes ---

Operations ---

2.1.8. Class: Employee

Description An Employee is a specialised Entity for representing users of real-life-resources and is an in-
stance of an EmployeeType.

Attributes ---

Operations ---

2.1.9. Class: AttributeType

Meta Resource Management System

5

Description Abstract base class for attribute types that an EntityType is composed of.

Attributes name (String): the name of the AttributeType

onlyPredefinedValuesAllowed (Boolean): if true, the user may only select the predefined values
for an Attribute that has this type; if false, he may enter another value as well

mandatory (Boolean): if true, the user must enter a value for Attributes of this type

frozen (Boolean): if true, the user may not change the value of Attributes of this type

Operations ---

2.1.10. Class: BooleanAttributeType

Description Concrete AttributeType for logical property characterisation of an Entity.

Attributes value (Boolean): logical property characterisation of an Entity

Operations ---

2.1.11. Class: NumberAttributeType

Description Concrete AttributeType for NumericalAttributes.

Attributes predefinedValues (Number[]): an array specifying predefined values for Attributes of this type

minValue (Number): the minimum value Attributes of this type may have

maxValue (Number): the maximum value Attributes of this type may have

Operations ---

2.1.12. Class: TextAttributeType

Description Concrete AttributeType for TextAttributes.

Attributes predefinedValues (String[]): an array specifying predefined values for Attributes of this type

minSize (Number): the minimum number of characters Attributes of this type may have

maxSize (Number): the maximum number of characters Attributes of this type may have

Operations ---

2.1.13. Class: Attribute

Description Abstract base class for Attributes that an Entity is composed of.

Attributes ---

Operations ---

2.1.14. Class: BooleanAttribute

Meta Resource Management System

6

Description Concrete Attribute for a boolean property characterisation of an Entity.

Attributes value (Boolean): numerical property characterisation of an Entity

Operations ---

2.1.15. Class: NumberAttribute

Description Concrete Attribute for a numerical property characterisation of an Entity.

Attributes value (Number): numerical property characterisation of an Entity

Operations ---

2.1.16. Class: TextAttribute

Description Concrete Attribute for a textual property characterisation of an Entity.

Attributes value (String): textual property characterisation of an Entity

Operations ---

2.2. Package: model.linkage
The following diagram depicts the classes that are necessary to represent the physical containment links
between resources and resources and the usage links between resources and employees.

Figure 2. Linkage Classes

2.2.1. Class: LinkRule

Description A Link Rule defines the characteristics of a consistent Link. Both the physical containment
structure of the resources as well as the usages of the resource by the users can be modelled as

Meta Resource Management System

7

links. In both cases the corresponding link rules have the characteristic that the cardinality of
one side is 1; for the physical containment links this side is the parent resource type and for the
usage links this side is the employee type. The other side of the link rule can have an arbitrary
cardinality (i.e. the number of children a parent has in the physical containment structure as well
as the number of resources an employee may use is not constrained by the system but can be
customized by the administrator); this cardinality is contained in the CardinalitySpec referenced
by the LinkRule. A LinkRule can reference an BooleanAttributeType of the parent resource / us-
ing employee; in this case Links of this LinkRule can only be created for those Resources / Em-
ployees where the corresponding BooleanAttribute is true.

Attributes name (String): name of the LinkRule

Operations ---

2.2.2. Class: Link

Description Base class for ResourceContainmentLink and ResourceUsageLink.

Attributes ---

Operations ---

2.2.3. Class: ResourceContainmentLinkRule

Description A ResourceContainmentLinkRule defines the characteristics of a consistent ResourceContain-
mentLink. It references two ResourceTypes which may be linked together by a ResourceCon-
tainmentLink.

Attributes ---

Operations ---

2.2.4. Class: ResourceContainmentLink

Description A ResourceContainmentLink references two Resources that are linked together by it; one re-
source takes the parent role, the other is its child in the pysical containment. Its consistency is
checked against the ResourceContainment LinkRule references.

Attributes ---

Operations ---

2.2.5. Class: ResourceUsageLinkRule

Description A ResourceUsageLinkRule defines the characteristics of a consistent ResourceUsageLink. It ref-
erences one ResourceType and one EmployeeType whose instances may be linked together by a
ResourceUsageLink.

Attributes ---

Operations ---

2.2.6. Class: ResourceUsageLink

Meta Resource Management System

8

Description A ResourceUsageLink references one Resource and one Employee that are linked together by it.
Its consistency is checked against the ResourceUsageLinkRule it references. There may be more
than one ResourceUsageLink at a Resource; but only one of can be active at a certain time.

Attributes startDate (Date): Time when usage starts.

stopDate (Date): Time when usage expires.

Operations ---

2.2.7. Class: CardinalitySpec

Description Specifies the minimum and maximum cardinality for a certain ResourceType, referenced by a
ResourceUsageLinkRule or a ResourceContainmentLinkRule. Example: A ResourceContain-
mentLinkRule has two ends ResourceType1 (parent) and ResourceType2 (child). The Resource-
Type1 always has the cardinality 1 while ResourceType2 has the cardinality min=1 and max=4,
this means that one specific Resource of ResourceType1 must have at least 1 and may have up
to 4 Links to Resources of ResourceType2. The CardinalitySpec may also reference a Number-
AttributeType of the ResourceType1.

Attributes minCardinality (Number): value for the minimum cardinality; will be ignored when there is a
“min”-reference to a NumberAttributeType, in this case the NumberAttribute's value will be
used instead

maxCardinality (Number): value for the maximum cardinality; will be ignored when there is a
“max”-reference to a NumberAttributeType, in this case the NumberAttribute's value will be
used instead

Operations ---

2.3. Package: model.user
The following diagram depicts the classes for user and access rights management of the MRMS.

Figure 3. User and Access Rights Management Classes

Meta Resource Management System

9

2.3.1. Class: AuthenticationData

Description Value class, encapsulating the authentication data of a user.

Attributes userName (String): the user's name

password (String): the user's password

Operations ---

2.3.2. Class: User

Description Class for user accounts of the MRMS. Its instances may play Roles in the system.

Attributes passwordExpirationDate (Date): date after which the user has to enter a new password

realName (String): real name of the user

Operations

• static checkPasswordStrength(password: String): Boolean

Effect Checks, if the given password String is strong enough (minimum length,
mixed letters and numbers, ...) to be accepted by the system.

Parameters password: the password to be checked

Return The boolean value true, iff the password is strong enough.

Exceptions ---

Meta Resource Management System

10

Actor Control class of the use case “User changes password”.

• static findUser(authData: AuthenticationData): User

Effect Searches the system for a User matching the given AuthenticationData.

Parameters authData: the AuthenticationData to search for

Return If a matching User object could be found it is returned, otherwise the opera-
tion returns the null pointer.

Exceptions ---

Actor Control class of the use case “User logs in”.

2.3.3. Class: Role

Description A Role defines which AccessRights its players (Users) have.

Attributes name (String): name of the Role

isAdministratorRole (Boolean): defines if Users of the Role have administration rights

Operations ---

2.3.4. Class: AccessRight

Description Abstract base class for access rights. If a Role references an AccessRight it has this AccessRight.
Users have the AccessRights which the Roles they play have.

Attributes ---

Operations ---

2.3.5. Class: ResourceAccessRight

Description Concrete AccessRight that defines owner's authority of working with Resources that are of a
specific ResourceType.

Attributes canCreate (Boolean): defines if Resources of the referenced ResourceType may be created

canDelete (Boolena): defines if Resources of the referenced ResourceType may be deleted

Operations ---

2.3.6. Class: AttributeAccessRight

Description Concrete AccessRight that defines owner's authority of working with Atrributes of a specific At-

Meta Resource Management System

11

tributeType that belongs to a specific ResourceType.

Attributes canRead (Boolean): defines if Attributes of the referenced AttributeType may be read

canWrite (Boolean): defines if Attributes of the referenced AttributeType may be written

Operations ---

2.3.7. Class: LinkAccessRight

Description Concrete AccessRight that defines owner's authority of creating and deleting Links according to
a specific LinkRule.

Attributes canLink (Boolean): defines if Links according to the referenced LinkRule may be created

canUnlink (Boolean): defines if Links according to the referenced LinkRule may be deleted

Operations ---

2.4. Package: model.filter
The following diagram depicts the classes needed to configure a filter and get a collection of Resources out of it.

Figure 4. Filter Classes

2.4.1. Class: Filter

Description A Filter is used to get a subset of all Resources of the referenced ResourceType. The Filter is
defined by the Constraints it is composed of.

Attributes ---

Operations

• getMatchingResources(): Resource[]

Meta Resource Management System

12

Effect Searches the system for Resources matching the referenced Constraints.

Parameters ---

Return An array of the matching Resources.

Exceptions ---

Actor Control class of the use case “Create filtered collection of resource entries”.

2.4.2. Class: Constraint

Description Abstract base class for constraints. Constraints are used by a Filter to describe a specific state
that Resource must fulfill to pass.

Attributes ---

Operations

• matches(resource: Resource): Boolean

Effect Tests, if the given Resource matches this Constraint.

Parameters resource: the Resource to be tested

Return The boolean value true, iff the given Resource matches this Constraint.

Exceptions ---

Actor Class Filter.

2.4.3. Class: AttributeConstraint

Description An AttributeConstraint is a concrete Constraint that checks whether an Attribute of the refer-
enced AttributeType is either equal to the referenced Attribute or lays between the two refer-
enced min- and max-Attributes.

Attributes ---

Operations ---

2.4.4. Class: ContainmentConstraint

Description A ContainmentConstraint is a concrete Constraint that checks whether a Resource matches the
physical containment state that is described by the following attributes. A ContainmentCon-
straint references the LinkRule it refers to. If in this LinkRule the ResourceType that is to be
filtered has (1) the parent role minimum and maximum cardinality are taken from LinkRule's
CardinalitySpec and refer to the number of children; if it has (2) the client role then min = max
= 1 iff the field requiresParent of the ResourceType is true, min = max = 0 otherwise.

Attributes underLinked (Boolean): cur < min

Meta Resource Management System

13

free (Boolean): cur = 0

linkable (Boolean): cur < max

unlinkable (Boolean): cur >= max

overLinked (Boolean): cur > max

Operations ---

2.4.5. Class: UsageConstraint

Description A UsageConstraint is a concrete Constraint that checks whether a Resource is used or unused
in a given time period.

Attributes used (Boolean): Defines whether the filtered Resources have to be used or unused in the given
time period.

startDate (Date): Start time of the time time period.

stopDate (Date): End time of the time period.

Operations ---

2.4.6. Sequence diagram: Filter.getMatchingResources

The following diagram shows how a filter determines the matching resources.

Figure 5. Sequence: Filter.getMatchingResources

3. Package: client
The following diagram depicts the main classes needed to realize an interaction between the user and the
MRMS.

Meta Resource Management System

14

Figure 6. Control and Boundary Classes

3.1. Class: SessionState

Description A SessionState describes a session of interaction between the MRMS and a user. A User is
logged in in a SessionState if it references that User. If logged in it has a remote reference to an
instance of MrmsFacade on the server which can be used by the control to communicate with
the server.

Attributes ---

Operations

• loggedIn(user: User): Boolean

Effect Checks whether the given User is logged in in this SessionState.

Parameters ---

Return The boolean value true, if the given User is logged in in this SessionState.

Exceptions ---

Actor MainController

3.2. Class: MainController

Description The MainController manages concrete AbstractControls. It provides a ViewContainer were Ab-
stractViews of AbstractControls may be plugged in. It is associated with a SessionState that

Meta Resource Management System

15

provides a reference to the suitable MRMS server facade. Managed AbstractControls may inter-
act with the MainController by using Events. For this the MainController provides delegate op-
erations that may be registered at the AbstractControls. Moreover it contains static helper opera-
tions for showing dialogs to the user (used by AbstractControls). The MainController imple-
ments the Mediator pattern as described by the GoF. See also Section 3.7, “Sequence diagrams
for package model.client” [].

Attributes ---

Operations

• static showError(text: String): void

Effect An error pop up is shown to the user.

Parameters text: Error message

Return ---

Exceptions ---

Actor AbstractControls

• static requestConfirmation(text: String): int

Effect A confirmation dialog is shown to the user.

Parameters text: Confirmation message

Return An int value that is representing the decision of the user

Exceptions ---

Actor AbstractControls

• start(): void

Effect Activates default controls, MenuBar- and ToolBarControl, shows application
window and starts event handling.

Parameters ---

Return ---

Exceptions ---

Actor User

• stop(): void

Effect Disposes the application and all its controllers.

Parameters ---

Return ---

Exceptions ---

Meta Resource Management System

16

Actor MainController

• handleUserLogsInEvent(sender: AbstractControl, args: System.Args): void

Effect A UserLogsInControl is created and invoked. Its view is plugged into the
ViewContainer.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor AbstractControls using an EventHandle

• showNavigationPaneEvent(sender: AbstractControl, args: System.Args): void

Effect An NavigationControl for the selected Resource is created and invoked. Its
view is plugged into the ViewContainer.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor AbstractControls using an EventHandle

• handleEditResourceEvent(sender: AbstractControl, args: System.Args): void

Effect An EditResourceControl for the selected Resource is created and invoked
(uses static createEditResourceControl()) .

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor AbstractControls using an EventHandle

• handleCreateFilterEvent(sender: AbstractControl, args: System.Args): void

Effect A CreateFilterControl is created and invoked. Its view is plugged into the
ViewContainer.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Meta Resource Management System

17

Return ---

Exceptions ---

Actor AbstractControls using an EventHandle

• handleUseCaseDoneEvent(sender: AbstractControl, args: System.Args): void

Effect The sender (concrete AbstractControl) is disposed and its view is removed
from the ViewContainer.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor AbstractControls using an EventHandle

• handleSelectionChangedEvent(sender: AbstractControl, args: System.Args): void

Effect All controls are informed about the new selection by an event.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor AbstractControls using an EventHandle

Figure 7. State chart: MainController

Meta Resource Management System

18

3.3. Class: AbstractControl

DescriptionUser logs in Base class for all concrete use case controllers. Encapsulates the common control
flow. See also Section 3.7, “Sequence diagrams for package model.client” [].

Attributes ---

Operations

• invoke(): void

Effect Constructor operation that activates this AbstractControl in-
stance.

Parameters ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect The AbstractControl is told to create its view component.

Parameters ---

Return The created view component

Exceptions ---

Actor MainController

• dispose(): void

Meta Resource Management System

19

Effect Destroys the AbstractControl and its view component.

Parameters ---

Return ---

Exceptions ---

Actor MainController

3.4. Class: ViewContainer

Description A ViewContainer is a component were the MainController may plug in AbstractViews of Ab-
stractControls. See also Section 3.7, “Sequence diagrams for package model.client” [].

Attributes ---

Operations

• addView(view: AbstractView,location: int): void

Effect Adds the given AbstractView.

Parameters view: AbstractView to be added

location: An identifier determining the location to place the AbstractView

Return ---

Exceptions ---

Actor MainController

• removeView(view: AbstractView): void

Effect Removes the given AbstractView.

Parameters view: AbstractView to be removed

Return ---

Exceptions ---

Actor MainController

3.5. Package: client.control

Figure 8. Package: client.control

Meta Resource Management System

20

3.5.1. Class: UserLogsInControl

Description A concrete AbstractControl for logging a user in. See also Section 3.7, “Sequence diagrams for
package model.client” [].

Attributes ---

Operations

• invoke(sender: AbstractControl, args: System.Args): void

Effect The user is requested to enter his/her AuthentificationData.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect An UserLogsInView is created and returned.

Meta Resource Management System

21

Parameters ---

Return The created UserLogsInView

Exceptions ---

Actor MainController

• handleDataReceivedEvent(sender: AbstractControl, args: System.Args): void

Effect Either the user gets logged in or an error dialog is shown to him.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor UserLogsInView

3.5.2. Class: NavigationControl

Description A concrete AbstractControl for navigating entities managed by the MRMS system. See also
Section 3.7, “Sequence diagrams for package model.client” [].

Attributes ---

Operations

• invoke(sender: AbstractControl, args: System.Args): void

Effect The NavigationControl waits for user's interaction.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect An NavigationView is created and returned.

Parameters ---

Return The created NavigationView

Exceptions ---

Meta Resource Management System

22

Actor MainController

3.5.3. Class: EditResourceControl

Description A concrete AbstractControl for editing Resources managed by the MRMS system. See also Sec-
tion 3.7, “Sequence diagrams for package model.client” [].

Attributes ---

Operations

• invoke(sender: AbstractControl, args: System.Args): void

Effect Locks the Resource that shall be edited using the MrmsFacade. The user is
requested to enter the changes to be performed.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect An EditResourceView is created and returned.

Parameters ---

Return The created EditResourceView

Exceptions ---

Actor MainController

• handleDataReceivedEvent(sender: AbstractControl, args: System.Args): void

Effect Updates the edited Resource using the MrmsFacade or shows an error dialog.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor EditResourceView

Meta Resource Management System

23

3.5.4. Class: CreateFilterControl

Description A concrete AbstractControl editing Resources managed by the MRMS system. See also Sec-
tion 3.7, “Sequence diagrams for package model.client” [].

Attributes ---

Operations

• invoke(sender: AbstractControl, args: System.Args): void

Effect The user is requested to enter the filter constraints.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect An CreateFilterView is created and returned.

Parameters ---

Return The created CreateFilterView

Exceptions ---

Actor MainController

• handleDataReceivedEvent(sender: AbstractControl, args: System.Args): void

Effect Gets a list of matching resources and presents it to the user.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor CreateFilterView

• handleCloseListEvent(sender: AbstractControl, args: System.Args): void

Effect Terminates the CreateFilterControl.

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Meta Resource Management System

24

Exceptions ---

Actor CreateFilterView

3.5.5. Class: MenuBarControl

Description A concrete AbstractControl that is managing an client's application window menu bar.

Attributes ---

Operations

• invoke(sender: AbstractControl, args: System.Args): void

Effect ---

Parameters sender: The Sender of the event that invoked this operation

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect An MenuBarView is created and returned.

Parameters ---

Return The created MenuBarView

Exceptions ---

Actor MainController

3.5.6. Class: ToolBarControl

Description A concrete AbstractControl that is managing an client's application window tool bar.

Attributes ---

Operations

• invoke(sender: AbstractControl, args: System.Args): void

Effect ---

Parameters sender: The Sender of the event that invoked this operation

Meta Resource Management System

25

args: Arguments of the event that invoked this operation

Return ---

Exceptions ---

Actor MainController

• createView(): AbstractView

Effect An ToolBarView is created and returned.

Parameters ---

Return The created ToolBarView

Exceptions ---

Actor MainController

3.6. Package: client.view

Figure 9. Package: model.view

3.6.1. Class: UserLogsInView

Meta Resource Management System

26

Description A concrete AbstractView representing a log-in-dialog.

Attributes ---

Operations handleRequestAuthentificationDataEvent(sender: AbstractControl, args: System.Args): void

3.6.2. Class: NavigationView

Description A concrete AbstractView for navigating entities managed by the MRMS system.

Attributes ---

Operations ---

3.6.3. Class: EditResourceView

Description A concrete AbstractView for editing Resources managed by the MRMS system.

Attributes ---

Operations handleRequestEditResourcetDataEvent(sender: AbstractControl, args: System.Args): void

3.6.4. Class: CreateFilterView

Description A concrete AbstractView for creating a Filter.

Attributes ---

Operations handleRequestFilterConstraintsEvent(sender: AbstractControl, args: System.Args): void

handleShowResourceListEvent(sender: AbstractControl, args: System.Args): void

3.6.5. Class: MenuBarView

Description A concrete AbstractView for that shows a menu bar.

Attributes ---

Operations ---

3.6.6. Class: ToolBarView

Description A concrete AbstractView that shows a tool bar.

Attributes ---

Operations ---

3.7. Sequence diagrams for package model.client
These diagrams verify the model.client package.

Meta Resource Management System

27

3.7.1. Sequence diagram: Application start

The following diagram illustrates the starting process of the application.

Figure 10. Application start

3.7.2. Sequence diagram: AbstractControl's life cycle

The following diagram illustrates the life cycle of an AbstractControl and its view.

Figure 11. AbstractControl's life cycle

Meta Resource Management System

28

3.7.3. Sequence diagram: User logs in

The following diagram illustrates the object interaction while performing the use case "User logs in"

Figure 12. User logs in

Meta Resource Management System

29

3.7.4. Sequence diagram: Create filtered collection of resource
entries

The following diagram illustrates the object interaction while performing the use case "Create filtered collection
of resource entries"

Figure 13. Create filtered collection of resource entries

Meta Resource Management System

30

3.7.5. Sequence diagram: Edit resources

The following diagram illustrates the object interaction while performing the use case "Edit Resources"

Figure 14. Edit resources

4. Package: server
The client's interface to the server application is the MrmsFacade. Every instance of an MrmsFacade has a
FacadeContext that provides access to a central LockManager as well as to the PersistenceLayer.

Meta Resource Management System

31

Figure 15. The MRMS Server Core Classes

4.1. Class: MrmsFacade

Description The MrmsFacade provides the server's functionality to connected clients. Every instance refer-
ences one FacadeContext which provides access to a central LockManager as well as to the
PersistenceLayer.

Attributes ---

Operations

• login(user: User): MrmsFacade

Meta Resource Management System

32

Effect Constructor operation. Verifies and authorizes the given User and initializes
a new MrmsFacade on success. If the User could not be authorized a Login-
FailedException is thrown.

Parameters user (User): the User object identifying and authorizing the user to log in.

Return An instance of MrmsFacade

Exceptions LoginFailedException

Actor UserLogsInControl

• acquireLock(id:EntityID): void

Effect Requests to acquire a lock for the given EntityID at the central LockManager
instance.

Parameters id (EntityID): the EntityID of the Entity that should be locked.

Return ---

Exceptions LockNotAvailableException - if the id is already locked

RevisionChangedException - if the id's revision is not current

Actor EditResourceControl

• releaseLock(id: EntityID): void

Effect Requests to release a lock for the given EntityID at the central LockManager
instance.

Parameters id (EntityID): the EntityID of the Entity to unlock

Return ---

Exceptions ---

Actor EditResourceControl

• acquireLock(id:EntityTypeID): void

Effect Requests to acquire a lock for the given EntityTypeID at the central Lock-
Manager instance.

Parameters id (EntityTypeID): the EntityTypeID of the EntityType that should be locked.

Return ---

Exceptions LockNotAvailableException - if the id is already locked

Meta Resource Management System

33

RevisionChangedException - if the id's revision is not current

Actor EditResourceControl

• releaseLock(id: EntityTypeID): void

Effect Requests to release a lock for the given EntityTypeID at the central LockMan-
ager instance.

Parameters id (EntityTypeID): the EntityTypeID of the EntityType to unlock

Return ---

Exceptions ---

Actor EditResourceControl

• getResourceTypes(): ResourceType[]

Effect Getter without side effects.

Parameters ---

Return An array with all ResourceTypes that the administrator has configured in the
system.

Exceptions ---

Actor NavigationControl

• getEmployeeTypes(): EmployeeType[]

Effect Getter without side effects.

Parameters ---

Return An array with all EmployeeTypes that the administrator has configured in the
system.

Exceptions ---

Actor NavigationControl

• getEntities(filter: Filter): EntitiesList

Effect Requests a list of Entitys matching the given Filter; has no side effects.

Meta Resource Management System

34

Parameters filter (Filter): the Filter that all returned entities must match.

Return an EntitiesList containing all matching Entities

Exceptions ---

Actor All controls that need to access entities.

• updateEntityAndReleaseLock(entity: Entity): void

Effect Updates the given Entity object and releases the associated lock.

Parameters entity (Entity): the Entity to update

Return ---

Exceptions ---

Actor EditEntityControl

• getUsers(): User[]

Effect Getter without side effects.

Parameters ---

Return An array with all Users that the administrator has configured in the system.

Exceptions ---

Actor NavigationControl

• getRoles(user: User): Role[]

Effect Getter without side effects.

Parameters user (User): the user whose roles should be returned

Return An array with all Roless that the administrator has configured in the system
for a specifc user.

Exceptions ---

Actor NavigationControl and EditUserControl

• getAccessRights(roles: Role[]): AccessRight[]

Effect Getter without side effects.

Meta Resource Management System

35

Parameters roles (Role[]): the roles whose access rights should be returned

Return An array with merged AccessRights that all given Roles have.

Exceptions ---

Actor NavigationControl and EditUserControl

• logout(): void

Effect Informs the MrmsFacade that the client does not need its services anymore;
any open locks will be released.

This method is automatically called if the client did not do any request for a
specific amount of time (15 Min).

Parameters ---

Return ---

Exceptions ---

Actor MainController

4.2. Class: FacadeContext

Description The FacadeContext provides a context for a MrmsFacade which consists of references to the
central instances of LockManager and PersistenceLayer.

Attributes ---

Operations ---

4.3. Class: LockManager

Description The LockManager holds information about locked Entitys and EntityTypes. Client classes may
acquire and release locks with instances of this class.

Attributes ---

Operations

• acquireLock(id:EntityID): void

Effect Requests to acquire a lock for the given EntityID at the central LockManager
instance.

Parameters id (EntityID): the EntityID of the Entity that should be locked.

Return ---

Meta Resource Management System

36

Exceptions LockNotAvailableException - if the id is already locked

RevisionChangedException - if the id's revision is not current

Actor EditResourceControl

• releaseLock(id: EntityID): void

Effect Requests to release a lock for the given EntityID at the central LockManager
instance.

Parameters id (EntityID): the EntityID of the Entity to unlock

Return ---

Exceptions ---

Actor EditResourceControl

• acquireLock(id:EntityTypeID): void

Effect Requests to acquire a lock for the given EntityTypeID at the central Lock-
Manager instance. A lock on an EntityType also locks all Entitys of this type
and no Entitys of this type may be created.

Parameters id (EntityTypeID): the EntityTypeID of the EntityType that should be locked.

Return ---

Exceptions LockNotAvailableException - if the id is already locked

RevisionChangedException - if the id's revision is not current

Actor EditResourceControl

• releaseLock(id: EntityTypeID): void

Effect Requests to release a lock for the given EntityTypeID at the central LockMan-
ager instance.

Parameters id (EntityTypeID): the EntityTypeID of the EntityType to unlock

Return ---

Exceptions ---

Actor EditResourceControl

Meta Resource Management System

37

4.3.1. Sequence diagrams: Locking

Figure 16. Acquire lock without problems

Figure 17. Acquire lock of already locked entity

Figure 18. Acquire lock of a outdated entity

Meta Resource Management System

38

4.4. Class: PersistenceLayer

Description Implements a persistence layer for objects of MRMS model classes. It provides atomic load, up-
date and delete methods for all important model classes as well as query functionality.

Attributes ---

Operations ---

5. Appendix: .NET Event Handling
The MRMS is implemented for the .NET platform and therefore partly builds up on the .NET model for event
handling. The following two figures are an overview on how that mechanism works.

Figure 19. Classes within the .NET event model

Meta Resource Management System

39

Figure 20. Sequence: Sample setup and action

Meta Resource Management System

40

6. Appendix: Use Cases
These are the use cases derived from the additional functionality “Resource Reservation”.

6.1. Create resource reservation

Goal A new reservation for a resource is created.

Category Primary

External Actors User

Precondition A user is logged in who has proper access rights to create the new resource reser-
vation.

Triggering Event The user requests the system to create a new resource reservation.

Meta Resource Management System

41

Postcondition Success A new resource reservation has been created according to the users input.

Postcondition Failure No new resource reservation has been created.

Description

1. The system requests the user to choose the resource, start time, end time of
the reservation and the customer.

2. The user determines resource reservation and submits his input.

3. The system creates a new resource reservation.

Extensions ---

Alternatives ---

Additional Requirements ---

Annotation ---

6.2. Delete resource reservation

Goal The reservation for a resource is deleted.

Category Primary

External Actors User

Precondition A user is logged in who has proper access rights to delete the resource reserva-
tion.

Triggering Event The user requests the system to delete a resource reservation.

Postcondition Success The resource reservation has been deleted.

Postcondition Failure The resource reservation has not been deleted.

Description

1. The system requests the user to choose a resource reservation.

2. The user determines the resource reservation to delete and submits his input.

3. The system deletes the resource reservation.

Extensions ---

Alternatives ---

Additional Requirements ---

Annotation ---

6.3. Change resource reservation

Goal The reservation for a resource is changed.

Meta Resource Management System

42

Category Secondary

External Actors User

Precondition A user is logged in.

Triggering Event The user requests the system to create a filtered collection of resource reserva-
tions.

Postcondition Success The user is shown a collection of resource reservations that passed the filter he
created.

Postcondition Failure ---

Description

1. The system requests the user to choose a resource reservation for changing.

2. The user determines the resource reservation to change and submits his in-
put.

3. The system changes the resource reservation.

Extensions ---

Alternatives ---

Additional Requirements ---

Annotation ---

6.4. Create filtered collection of resource reservation
entries

Goal Collect a set of resources reservations meeting a specific criterion and offer it to
the user for further processing.

Category Secondary

External Actors User

Precondition A user is logged in who has proper access rights to change the resource reserva-
tion.

Triggering Event The user requests the system to change a resource reservation.

Postcondition Success The resource reservation has been changed.

Postcondition Failure The resource reservation has not been changed.

Description

1. The system requests the user to configure a filter listed resource reserva-
tions will have to pass

2. The system collects all resource reservations passing the specified filter and
offers them to the user for further processing.

Extensions ---

Meta Resource Management System

43

Alternatives ---

Additional Requirements ---

Annotation ---

Meta Resource Management System

44

